On self-similar continua with finite intersection property

TETENOV Andrei

Novosibirsk State University, Russia E-mail a.tetenov@g.nsu.ru

Let $S = \{S_1, ..., S_m\}$ be a system of injective contraction maps in \mathbb{R}^n , whose attractor K is connected. If for any non-equal $i, j \in \{1, ..., m\}$, the intersection of the pieces K_i and K_j of the attractor K contains at most s points, then we say that the system S is a FI(s)-system of contractions and we say that K is a self-similar continuum with finite intersection property.

For a FI(s)-system of contractions S we define its bipartite intersection graph $\Gamma(S)$. This graph determines the topological properties of the attractor K. Particularly, we prove the following Theorem.

Theorem 1. Let S be a system of injective contraction maps in a complete metric space X, which satisfies finite intersection property. The attractor K of the system S is a dendrite iff the intersection graph $\Gamma(S)$ of the system S is a tree.

We prove that if S is a FI(s)-system of similarities in \mathbb{R}^n which satisfies open set condition, then there is a finite upper bound for the numbers of addresses $\#\pi^{-1}(x)$ and $\#\pi^{-1}(\partial K_{\mathbf{j}})$; for the ramification numbers $N_C(\{x\})$ and $N_C(K_{\mathbf{j}})$ and for the topological order $\mathrm{Ord}(x,K)$ and $\mathrm{Ord}(K_{\mathbf{j}},K)$.

Acknowledgements: This work was supported by the Mathematical Center in Akademgorodok with the Ministry of Science and Higher Education of the Russian Federation, agreement no. 075-15-2019-1613.