Topological entropy of maps on inverse limits

Ana Anušić University of São Paulo, Brazil

Coauthors: Chris Mouron (Rhodes College, Memphis, TN, USA)

Virtual VCDS June 14th 2021

A., C. Mouron, *Strongly commuting interval maps*, preprint 2020, arXiv:2010.15328 [math.DS]

A., C. Mouron, *Topological entropy of diagonal maps on inverse limit spaces*, preprint 2020, arXiv:2010.15332 [math.DS]

Inverse limits

We are assuming:

 X_i are compact, connected, metric spaces (continua) for $i \ge 0$,

 $f_i \colon X_i o X_{i-1}$ are continuous and onto, for $i \ge 0$.

The inverse limit space is given by

$$\varprojlim \{X_i, f_i\} := \{(x_0, x_1, x_2, \ldots) : f_i(x_i) = x_{i-1}, i \ge 1\} \subset \prod_{i=0}^{\infty} X_i,$$

equipped with the product topology.

Denote by $\pi_i : \varprojlim \{X_i, f_i\} \to X_i$ the coordinate projections. They are continuous.

 ∞

Question

Compute the topological entropy of a map $\Psi: \varprojlim\{X_i, f_i\} \to \varprojlim\{X_i, f_i\}$.

For example, assume that X_i are all equal to some continuum X, and f_i are all equal to some map $f: X \to X$. Assume that Ψ is the **natural** extension $\hat{f}: \lim_{X \to Y} \{X, f\} \to \lim_{X \to Y} \{X, f\}$,

Then $\operatorname{Ent}(\widehat{f}) = \operatorname{Ent}(f)$ (Bowen 1970).

Straight-down maps on $\lim_{i \to \infty} \{X_i, f_i\}$

Assume there exists a commutative diagram

Let $\Psi : \varprojlim \{I, f_i\} \to \varprojlim \{I, f_i\}$ be the straight-down map: $\Psi((x_0, x_1, x_2, \ldots)) := (g_0(x_0), g_1(x_1), g_2(x_2), \ldots)$ Then $\operatorname{Ent}(\Psi) = \sup_i \operatorname{Ent}(g_i)$ (Ye 1995).

Theorem (Mouron 2012)

Every straight-down map on the pseudo-arc has entropy 0 or ∞ .

Given $r \in [0, \infty]$, there exists a pseudo-arc homeomorphism h such that Ent(h) = r. (Boroński, Činč, Oprocha 2021)

▲■▶ ▲ ヨ▶ ▲ ヨ▶ - ヨ - のへで

Other continuous self-maps of $\lim \{X_i, f_i\}$

Not all continuous maps on $\varprojlim \{X_i, f_i\}$ are straight-down maps. For example, the diagram

can only ε_i -commute, where $\varepsilon_i \to 0$ as $i \to \infty$. Or, it can be of the form (here $f_n^m = f_{n+1} \circ \ldots f_m \colon X_m \to X_n$):

In general, Ye's result does not hold when the map is not straight-down:

 $(x_0, x_1, x_2, \ldots) \mapsto (T_2(x_1), T_2(x_2), T_2(x_3), \ldots) = (x_0, x_1, x_2, \ldots),$ so $\operatorname{Ent}(g) = \operatorname{Ent}(id) = 0$. However, $\operatorname{Ent}(T_2) = \log(2)$.

Straight-down components

The diagram "commutes" in a sense that $f_i^j \circ \psi_j(x) \subset \psi_i \circ f_i^j(x)$ for every i < j and $x \in X_j$.

Theorem (A., Mouron 2020)

 $\operatorname{Ent}(\Psi) \leq \liminf_{i \geq 0} \operatorname{Ent}(\psi_i)$ (entropy of set-valued maps?)

The equality does not hold in general (nor the limit exists). However, there is a wide class for which the equality holds.

通 ト イヨ ト イヨ ト ヨ うくべ

Let $F: X \to 2^X$ be a (set-valued) function such that the graph $\Gamma(F) = \{(x, y) : y \in F(x)\}$ is closed in $X \times X$.

For $n \in \mathbb{N}$, an *n*-orbit is (x_1, \ldots, x_n) such that $x_{i+1} \in F(x_i)$ for every $1 \le i < n$. Denote by $Orb_n(F)$ the set of all *n*-orbits of *F*.

$$F(0) = \{0, 1\}, F(1/4) = \{1/4, 3/4\}$$

(0, 1, 1, 0, 1, 1) is a 6-orbit
(1/4, 1/4, 3/4, 3/4, 1/4) is a 5-orbit
$$F = T_2^{-1} \circ T_2$$

For $n \in \mathbb{N}$ and $\varepsilon > 0$, we say that a set $S \subset Orb_n(F)$ is (n, ε) -separated if for every $(x_1, \ldots, x_n), (y_1, \ldots, y_n) \in S$ there exists $i \in \{1, \ldots, n\}$ such that $d_X(x_i, y_i) > \varepsilon$. Let $s_{n,\varepsilon}(F)$ denote the largest cardinality of an (n, ε) -separated set.

For $n \in \mathbb{N}$ and $\varepsilon > 0$, we say that a set $S \subset Orb_n(F)$ is (n, ε) -spanning if for every $(x_1, \ldots, x_n) \in Orb_n(F)$ there exists $(y_1, \ldots, y_n) \in S$ such that $d_X(x_i, y_i) < \varepsilon$ for every $i \in \{1, \ldots, n\}$. The smallest cardinality of an (n, ε) -spanning set is denoted by $r_{n,\varepsilon}(F)$.

The entropy of F is defined as

$$\operatorname{Ent}(F) = \lim_{\varepsilon \to 0} \limsup_{n \to \infty} \frac{1}{n} \log(s_{n,\varepsilon}(F)) = \lim_{\varepsilon \to 0} \limsup_{n \to \infty} \frac{1}{n} \log(r_{n,\varepsilon}(F)).$$

$$\operatorname{Ent}(F) = \lim_{\varepsilon \to 0} \limsup_{n \to \infty} \frac{1}{n} \log(s_{n,\varepsilon}(F)) = \lim_{\varepsilon \to 0} \limsup_{n \to \infty} \frac{1}{n} \log(r_{n,\varepsilon}(F)).$$

 $F(0) = \{0, 1\}, F(1/4) = \{1/4, 3/4\}$ (0, 1, 1, 0, 1, 1) is a 6-orbit (1/4, 1/4, 3/4, 3/4, 1/4) is a 5-orbit

 $\{0,1\}^n \subset Orb_n(F)$ is (n,ε) -separated for $\varepsilon < 1$, so $Ent(F) \ge \log(2)$. $\{\{x,1-x\}^n : x \in \{0,\frac{\varepsilon}{2},\varepsilon,\frac{3\varepsilon}{2},\ldots,\lfloor\frac{1}{\varepsilon}\rfloor\frac{\varepsilon}{2}\}\} \subset Orb_n(F)$ is (n,ε) -spanning, so $Ent(F) \le \log(2)$.

Thus $\operatorname{Ent}(F) = \log(2)$.

Example

 $F(0) = \{0, 1\}, F(1/4) = \{1/4, 3/4\}$ (0, 1, 1, 0, 1, 1) is a 6-orbit (1/4, 1/4, 3/4, 3/4, 1/4) is a 5-orbit Ent(F) = log(2)

Note that $\operatorname{Ent}(F^k) = \operatorname{Ent}(F) = \log(2)$ for every $k \in \mathbb{N}$. Thus for $k \ge 2$, $\operatorname{Ent}(F^k) \neq k \operatorname{Ent}(F)$.

Let $\Psi: \varprojlim \{X_i, f_i\} \to \varprojlim \{X_i, f_i\}$ be continuous. For $i \ge 0$ define $\psi_i: X_i \to X_i$ as $\psi_i(x) = \pi_i \circ \Psi \circ \pi_i^{-1}(x)$. Set-valued!

Theorem (A., Mouron 2020)

 $\operatorname{Ent}(\Psi) \leq \liminf_{i \geq 0} \operatorname{Ent}(\psi_i).$

|▲ @ ▶ ▲ 注 ▶ ▲ 注 ▶ ○ 注 ● の Q @

Diagonal maps

Assume that the following diagram commutes:

Define $G: \varprojlim\{I, f_i\} \to \varprojlim\{I, f_i\}$ by

$$G((x_0, x_1, x_2, \ldots)) = (g_1(x_1), g_2(x_2), g_3(x_3), \ldots).$$

Straight-down components: $\psi_i(x) = \pi_i \circ G \circ \pi_i^{-1}(x) = g_{i+1} \circ f_{i+1}^{-1}(x)$ for $i \ge 0$. It follows that $\operatorname{Ent}(G) \le \liminf_{i \to \infty} \operatorname{Ent}(g_i \circ f_i^{-1})$.

Question

Given continuous maps $f, g: X \to X$, how to compute $Ent(g \circ f^{-1})$?

14 / 27

- (a) used to construct an example of a tree-like continuum without a fixed point property (for which there is a self-map without a fixed point) Oversteegen and Rogers 1980, Hoehn and Hernández-Gutiérrez 2018,
- (b) used by Mouron in 2018 to give an example of an exact map (also called locally eventually onto) on the pseudo-arc.

Proposition (A., Mouron 2020)

Assume that maps $f_i, g_i \colon X_{i+1} \to X_i, i \in \mathbb{N}$, satisfy:

(i)
$$g_i \circ f_{i+1} = f_i \circ g_{i+1}$$
, and
(ii) $g_{i+1} \circ f_{i+1}^{-1} = f_i^{-1} \circ g_i$, $i \in \mathbb{N}$.
Let $X = \varprojlim(X_i, f_i)$ and $G \colon X \to X$ be the diagonal map
 $G((x_0, x_1, x_2, \ldots)) = (g_1(x_1), g_2(x_2), g_3(x_3), \ldots)$.
Then $\operatorname{Ent}(g_i \circ f_i^{-1}) \leq \operatorname{Ent}(G)$ for every $i \in \mathbb{N}$. In particular, it follows that

$$\operatorname{Ent}(G) = \lim_{i \to \infty} \operatorname{Ent}(g_i \circ f_i^{-1}).$$

(3)

< 67 ▶

Condition $g_{i+1} \circ f_{i+1}^{-1} = f_i^{-1} \circ g_i$?

Sketch of proof: For every *n*-orbit $\mathbf{x} = (x_1, \dots, x_n)$ of $g_i \circ f_i^{-1}$ we can find $\xi \in \lim_{i \to \infty} \{X_i, f_i\}$ such that $\pi_i(G^k(\xi)) = x_{k+1}, \ 1 \le k < n$. $X_1 \xleftarrow{f_i} v_1^1 \xleftarrow{f_{i+1}} v_1^2 \xleftarrow{f_{i+2}} v_1^3 \xleftarrow{f_{i+3}} \cdots$ $x_2 \xleftarrow{f_i}{f_i} y_2^1 \xleftarrow{f_{i+1}}{f_{i+1}} y_2^2 \xleftarrow{f_{i+2}}{\cdots}$ $x_3 \xleftarrow{f_i} y_2^{f_{i+1}} \cdots$ g_i

Now for an (n, ε) -separated set $\{\mathbf{x}_1, \ldots, \mathbf{x}_n\} \subset Orb_n(g_i \circ f_i^{-1})$ we find corresponding $\xi_1, \ldots, \xi_n \in \varprojlim \{X_i, f_i\}$. Then the set $\{(G^k(\xi_1))_{0 \leq k < n}, \ldots, (G^k(\xi_n))_{0 \leq k < n}\} \subset Orb_n(G)$ is $(n, \varepsilon/2^i)$ -separated.

Condition $g_{i+1} \circ f_{i+1}^{-1} = f_i^{-1} \circ g_i$?

Note that if $g_i \circ f_{i+1} = f_i \circ g_{i+1}$, then $g_{i+1} \circ f_{i+1}^{-1} \subseteq f_i^{-1} \circ g_i$. How difficult is it to satisfy the equality?

Restrict to sequences of the same map first.

Assume that $f \circ g = g \circ f$, $g \circ f^{-1} = f^{-1} \circ g$, and $G: \lim_{i \to \infty} \{X, f\} \to \lim_{i \to \infty} \{X, f\}$ is given by $G((x_i)_{i \ge 0}) = (g(x_i))_{i \ge 1}$. Then $\operatorname{Ent}(G) = \operatorname{Ent}(g \circ f^{-1})$.

Note that if $f \circ g = g \circ f$, then $g \circ f^{-1} \subseteq f^{-1} \circ g$. Which commuting maps satisfy the equality?

Strongly commuting maps

Maps $f, g: X \to X$ are called strongly commuting if $g \circ f^{-1} = f^{-1} \circ g$.

For $n \ge 2$, let $T_n: I \rightarrow I$ be the symmetric *n*-tent map:

Proposition (A., Mouron 2020)

 T_n and T_m strongly commute if and only if n and m are relatively prime.

19 / 27

Entropy and strongly commuting open maps

Let $F_n, F_m: I \to I$ be piecewise (strictly) monotone onto maps with *n* and *m* pieces of monotonicity. Assume that F_n and F_m are additionally **open**.

Proposition (A., Mouron 2020)

If F_n and F_m strongly commute, then $\operatorname{Ent}(F_n \circ F_m^{-1}) = \max\{\log(n), \log(m)\} = \max\{\operatorname{Ent}F_n, \operatorname{Ent}F_m\}.$

If n, m are relatively prime, then $\operatorname{Ent}(T_n \circ T_m^{-1}) = \max\{\log(n), \log(m)\}.$

Strongly commuting maps (on the interval)

Theorem (A., Mouron 2020)

Let $f, g: I \rightarrow I$ be piecewise monotone onto maps which strongly commute. Then there are $0 = p_0 < p_1 < \ldots < p_k = 1$ such that $[p_i, p_{i+1}]$ is invariant under f^2 and g^2 for every $i \in \{0, 1, \ldots, k-1\}$, and such that one of the following occurs:

(i) $f^2|_{[p_i,p_{i+1}]}$ and $g^2|_{[p_i,p_{i+1}]}$ are both open and non-monotone, (ii) $f^2|_{[p_i,p_{i+1}]}$ is monotone, or (iii) $g^2|_{[p_i,p_{i+1}]}$ is monotone.

Strongly commuting maps (on the interval)

Theorem (A., Mouron 2020)

Let $f, g: I \rightarrow I$ be **piecewise monotone** onto maps which strongly commute. Then there are $0 = p_0 < p_1 < \ldots < p_k = 1$ such that $[p_i, p_{i+1}]$ is invariant under f^2 and g^2 for every $i \in \{0, 1, \ldots, k-1\}$, and such that one of the following occurs:

(i) $f^2|_{[p_i,p_{i+1}]}$ and $g^2|_{[p_i,p_{i+1}]}$ are both open and non-monotone, (ii) $f^2|_{[p_i,p_{i+1}]}$ is monotone, or (iii) $g^2|_{[p_i,p_{i+1}]}$ is monotone.

Strongly commuting maps (on the interval)

Theorem (A., Mouron 2020)

Let $f, g: I \rightarrow I$ be **piecewise monotone** onto maps which strongly commute. Then there are $0 = p_0 < p_1 < \ldots < p_k = 1$ such that $[p_i, p_{i+1}]$ is invariant under f^2 and g^2 for every $i \in \{0, 1, \ldots, k-1\}$, and such that one of the following occurs:

(i) $f^2|_{[p_i,p_{i+1}]}$ and $g^2|_{[p_i,p_{i+1}]}$ are both open and non-monotone, (ii) $f^2|_{[p_i,p_{i+1}]}$ is monotone, or (iii) $g^2|_{[p_i,p_{i+1}]}$ is monotone.

Theorem (A., Mouron 2020)

If $f, g: I \to I$ are piecewise monotone onto maps which strongly commute, then $\operatorname{Ent}(g \circ f^{-1}) = \max{\operatorname{Ent}(f), \operatorname{Ent}(g)}.$

Sketch of proof: $2\text{Ent}(g \circ f^{-1}) \stackrel{!}{=} \text{Ent}((g \circ f^{-1})^2) = \text{Ent}(g^2 \circ f^{-2}) = \max\{\text{Ent}(g^2 \circ f^{-2}|_{[p_i, p_{i+1}]}):$ $i \in \{0, 1, \dots, k-1\}\} = \max\{\text{Ent}(g^2), \text{Ent}(f^2)\} = 2\max\{\text{Ent}(g), \text{Ent}(f)\}.$

In particular, given piecewise monotone onto maps $f, g: I \to I$ which strongly commute, the entropy of the diagonal map $G: \varprojlim \{I, f\} \to \varprojlim \{I, f\}$ given by $G((x_0, x_1, x_2, \ldots)) = (g(x_1), g(x_2), \ldots)$ equals

$$\operatorname{Ent}(G) = \operatorname{Ent}(g \circ f^{-1}) = \max{\operatorname{Ent}(f), \operatorname{Ent}(g)}.$$

Let $X_2 = \varprojlim \{I, T_2\}$ be the Knaster continuum. For every odd n > 1 we can construct a map $G_n \colon X_2 \to X_2$ with $\operatorname{Ent}(G_n) = \log(n)$:

Recall also that every homeomorphism on X_2 has entropy $k \log(2)$ for $k \in \mathbb{N}$ (Bruin and Štimac 2013 for unimodal inverse limits in general).

Thank you!

< 円

æ