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Older results/personal history

Non-L1 functions with convergent Birkhoff averages

Example of P. Major. Answering a question of M. Laczkovich:

Z.B.: If S, T : X → X are two µ-ergodic transformations which generate a

free Z2 action on the finite non-atomic Lebesgue measure space (X,S, µ)

then for any c1, c2 ∈ R there exists a µ-measurable function f : X → R such

that

MS
Nf(x) =

1

N + 1

N∑
j=0

f(Sjx)→ c1, and MT
Nf(x) =

1

N + 1

N∑
j=0

f(T jx)→ c2,

µ almost every x as N →∞.
Two different irrational rotations generate a free Z2 action on T ⇒ answer

to Laczkovich’s question.

Trying two answer Laczkovich’s question first I proved the following theo-

rem:
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T .: Let f : R→ R be a given measurable function, periodic by 1.

For an α ∈ R put Mα
n f(x) =

1

n+ 1

n∑
k=0

f(x+ kα).

Let Γf denote the set of those αs in (0,1) for which Mα
n f(x) converges for

almost every x ∈ R.
Then from |Γf | > 0 it follows that f is integrable on [0,1].
|Γf | > 0 ⇒ f ∈ L1 and for all α ∈ [0,1]\Q the limit of Mα

n f(x) equals
∫ 1
0 f by

the Birkhoff Ergodic thm.
I gave an example of f 6∈ L1 for which dimH Γf = 1, but of course |Γf | = 0.

With G. Keszthelyi: generalizations.
G is a compact Abelian topological group, m is the Haar measure.
G is connected if and only if Ĝ is torsion-free.
Given a strictly monotone increasing sequence of integers (nk) we consider

the non-conventional ergodic averages Mα
Nf(x) =

1

N + 1

N∑
k=0

f(x+ nkα).

Of course, if nk = k we have the usual Birkhoff averages.
The f-rotation set is
Γf = {α ∈ G : Mα

Nf(x) converges for m a.e. x as N →∞}.
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If G = T, m = λ, the Lebesgue measure on T, and nk = k then for any

measurable f : T→ R from m(Γf) > 0 it follows that f ∈ L1(T).

Scrutinizing the proof of this result one can see that the set

Γf,0 =
{
α ∈ G :

f(x+ nkα)

k
→ 0 for m a.e. x

}
played an important role.

It is obvious that Γf ⊂ Γf,0.

We will also use the slightly larger set

Γf,b =
{
α ∈ G : lim sup

k→∞

|f(x+ nkα)|
k

<∞ for m a.e. x
}
.

T .: If (nk) is a strictly monotone increasing sequence of integers and G is

a compact, locally connected Abelian group and f : G→ R is a measurable

function then from m(Γf,b) > 0 it follows that f ∈ L1(G).

Rem.: Since Γf,b ⊃ Γf,0 ⊃ Γf the theorem implies that if one considers the

non-conventional ergodic averages Mα
Nf on a locally compact Abelian group

for group rotations and m(Γf) > 0 then f ∈ L1(G).
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Maximizing points and coboundaries for an irrational rotation on the

Circle

This is based on a joint paper with Julien Brémont.

Let (X,T ) be a top. dyn. sys., where X is a compact metric space and

T : X → X a continuous and surjective transformation.

Fix a continuous function f : X → R.

fn(x) =
n−1∑
k=0

T kf(x) =
n−1∑
k=0

f ◦ T k(x), n ≥ 1.

The optimal pointwise growth of (fn(x)) is an important question arising

naturally.

D .: Let f : X → R be continuous. A point x0 ∈ X is maximizing for f if there

exists a constant C ≥ 0 such that: ? ∀x ∈ X,∀n ≥ 1, fn(x) ≤ fn(x0) + C.

The point x0 is exactly maximizing if one can take C = 0 and weakly

maximizing if C is replaced by C(x).

If µ is a fixed Borel probability measure, we also say that x0 is “µ-weakly

maximizing” if ? is true for µ-a.e x with a constant C(x).
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Recall: The existence of maximizing points is naturally the first question to

be adressed. If f = c + g − Tg with g bounded and c constant then clearly

every point is maximizing for f . It is natural to ask whether this is the only

situation.

The answer is negative for dynamical systems where the

Lemma of Mané-Conze-Guivarc’h is valid.

In this case any Hölder continuous f admits a maximizing point.

We denote by Cm0(T) the set of those functions in C(T) which have zero

mean. In the same way we consider the spaces Crm0(T), r ≥ 1, and the

Hölder spaces Cθm0(T), 0 < θ < 1.

An interesting rigidity result for two-sided ergodic sums by J-P. Conze :

L .: Let f ∈ Cm0(T), T be an irrational rotation. If for some x0 ∈ T

∀n ≥ 1, ∀x ∈ T,
n−1∑
k=−n

T kf(x) ≤
n−1∑
k=−n

T kf(x0) + C,

then there exists g ∈ C(T) such that f = g − Tg.

One deduces that continuous functions with a maximizing point x0 and

presenting a symmetry with respect to x0 show similar behaviour.

Cor.: Let f ∈ Cm0(T) have a maximizing point x0. If f(x0 + x) = f(x0− x)

for all x ∈ T, then f = g − Tg for some g ∈ C(T).
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Recall that if f = g − Tg for a measurable g then by ergodicity g is unique

up to an additive constant and a null set.

For Hölder continuous functions we have the following result :

T .: Let Tx = x + α mod (1) on T, α 6∈ Q. Any of the following mutually

excluding conditions is realized by at least one f ∈ ∩0<θ<1C
θ
m0(T).

i) The point 0 is exactly maximizing for f , that is,

∀x ∈ T, ∀n ≥ 0, fn(x) ≤ fn(0)

and there exists g ∈
⋂

1<p<∞
Lp(T)\L∞(T) such that f = g − Tg, a.e.

In particular, g is not continuous.

ii) The point 0 is exactly maximizing for f

∀x ∈ T, ∀n ≥ 0, fn(x) ≤ fn(0)

and the skew-product (T × R, Tf , λT ⊗ λR) defined by f is ergodic, where

Tf(x, y) = (Tx, y + f(x)).

In particular f is not a measurable coboundary.

(f = g − Tg, Φ(x, y) = g(x) + y, Φ(Tf(x, y)) = g(Tx) + y + g(x)− g(Tx) = Φ(x, y))

iii) Let ε(n)↘ 0 as n↗ +∞. For any x ∈ T for a.e y ∈ T

sup
n∈N

{
n−ε(n)

(
fn(y)− fn(x)

)}
= +∞.

In particular f does not have any λ-weakly maximizing point.
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Generic functions in C(T) were also considered.

T .: Let Tx = x+α mod (1) on T, with α 6∈ Q. Then a generic function in

C(T) has no weakly maximizing point.

Our techniques also allow to treat the case of a dynamical system with a

very different nature.

T .: Let Tx = 2x mod (1) on T. Then a generic function in C(T) has no

maximizing point.
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Fast and slow points of Birkhoff sums

Based on a joint paper with: Frédéric Bayart and Yanick Heurteaux

T = R/Z and α ∈ R\Q,
C0(T) is the set of continuous functions on T with zero mean,
topology is generated by the sup-norm,
Sn,αf(x) is the n-th Birkhoff sum, Sn,αf(x) =

∑n−1
k=0 f(x+ kα).

Rα : x 7→ x+α is a uniquely ergodic transformation on T with respect to the
(normalized) Lebesgue measure λ.
⇒ For all f ∈ C0(T),
by the Ergodic Theorem 1

n

∑n−1
k=0 f(x+ kα)→ 0 =

∫
T fdλ,

for λ-a.e. x and by Weyl’s Thm. for all x
that is Sn,αf(x) = o(n) for all x ∈ T.

One can fix x and ask for the size of Sn,αf(x)
for a large proportion of n ≤ N .
Or one can also fix n and ask for the size of Sn,αf(x)
for a large set of initial conditions x.
Results in these directions are by (for example):
Kesten 1960-61, Beck 2010-11, Huveneers 2009, Bromberg-Ulcigrai 2018.
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Our purpose is quite different.
We want to investigate the typical growth of Sn,αf(x).

Settings:

• We can fix α ∈ R\Q (resp. x ∈ T) and ask for the behaviour of Sn,αf(x)
for f in a generic subset of C0(T) and for a typical x ∈ T (resp. for a typical
α ∈ T).

• We can also consider it as a problem of two variables and ask for the
behaviour of Sn,αf(x) for f in a generic subset of C0(T) and for a typical
(α, x) ∈ T2.

There are also several ways to understand the word “typical”.
We can look for a residual set of the parameter space or
for a set of full Lebesgue measure.

( residual = complement of a set of first (Baire) category/meagre set.)
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More general setup:
Ω is an infinite compact metric space
T : Ω→ Ω is a uniquely ergodic invertible continuous map.
µ is the ergodic measure.
We assume that it has full support
(equivalenty, that all orbits of T are dense).

For x ∈ Ω and f ∈ C0(Ω),
the Birkhoff sum Sn,Tf(x) is now defined by

∑n−1
k=0 f

(
T kx

)
.

Using ψ : N→ N with ψ(n) = o(n) for f ∈ C0(Ω) we let

Eψ(f) =

{
x ∈ Ω; lim sup

n

|Sn,Tf(x)|
ψ(n)

= +∞
}
.

Eψ(f) has already been studied by several authors.
In particular, it was shown by Krengel 1978 (when Ω = [0,1]) and
later by Liardet and Volný 1997 that,
for all functions f in a residual subset of C0(Ω), µ

(
Eψ(f)

)
= 1.

We complete this result by showing that
Eψ(f) is also residual (see next slide).

11



Recall: Eψ(f) =

{
x ∈ Ω; lim sup

n

|Sn,Tf(x)|
ψ(n)

= +∞
}
.

T.: ? Suppose that ψ : N→ N satisfies ψ(n) = o(n).

There exists a residual set R ⊂ C0(Ω) such that

for any f ∈ R, Eψ(f) is residual and of full µ-measure in Ω.

Rem.: It is important to remark that the conclusion of Theorem ? deeply

depends on the space of functions we consider and on its topology.

For example, in the context of irrational rotations,

Herman showed that C1+ε zero mean functions are coboundaries,

and their Birkhoff sums are bounded.

For functions of bounded variation, the growth of Birkhoff sums can be

estimated very precisely using Koksma’s inequality (see next slide).
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Koksma’s inequality:

T.: Suppose f : T→ R is of bounded variation, Var(f) and

the sequence {x1, ..., xN} has discrepancy D∗N .

Then ∣∣∣∣∣∣ 1N
N∑
i=1

f(xi)−
∫
T
f(T )dt

∣∣∣∣∣∣ ≤ Var(f)D∗N .

Recall:

The discrepancy of the sequence {x1, ..., xN} is defined by

D∗N = sup
I⊂T

∣∣∣∣∣card{1 ≤ i ≤ N ; xi ∈ I}
N

− |I|
∣∣∣∣∣ , where I is a subinterval of T.
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We could also replace here (and at many places later) the lim sup by lim inf.

Open Q.: Let ψ : N→ N with ψ(n) = o(n) and limn→+∞ψ(n) = +∞.

Does there exist f ∈ C0(Ω) such that

{x ∈ Ω; lim infn |Sn,Tf(x)|/|ψ(n)| = +∞} is residual?

The referee suggested to us that if we replace ”residual”

by ”non negligible set” in this question, the answer is negative.

One can prove that for any f ∈ C0(Ω), the set

A = {x ∈ Ω; lim inf
n→+∞

|Sn,Tf(x)| = +∞}

is µ-negligible.

This is a consequence of a result due to Atkinson 1976.
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(G,+) is a compact and connected metric abelian group.

Then G is a monothetic group, i.e. it possesses a dense cyclic subgroup.

µ is the Haar measure on G.

Group rotations Tu(x) = x+ u.

G0 is the set of u ∈ G such that Tu is ergodic.

Well-known results of ergodic theory ⇒
u belongs to G0 if and only if {nu; n ∈ Z} is dense in G,

in this case Tu is uniquely ergodic,

only the Haar measure is invariant with respect to Tu.

G0 is always nonempty, it is dense and its Haar measure equals 1.

Contrary to what happens in Theorem ? the growth of

Sn,uf(x) =
∑n−1
k=0 f(x+ ku) for a typical (u, x) ∈ G2 is

not the same from the topological and from the probabilistic points of view.

( Recall: Eψ(f) =

{
x ∈ Ω; lim sup

n

|Sn,Tf(x)|
ψ(n)

= +∞
}
.

T.: ? Suppose that ψ : N → N satisfies ψ(n) = o(n). There exists a

residual set R ⊂ C0(Ω) such that for any f ∈ R, Eψ(f) is residual and of full

µ-measure in Ω.

)
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For the prob./meas. case the typical growth of Sn,uf(x) has order n1/2:

T.: ??
• For all ν > 1/2 and all f ∈ L2

0(G),

µ⊗ µ
({

(u, x) ∈ G2; lim supn
|Sn,uf(x)|

nν ≥ 1
})

= 0.

• There exists a residual subset R ⊂ C0(G) such that, for all f ∈ R,

µ⊗ µ
({

(u, x) ∈ G2; lim supn
|Sn,uf(x)|
n1/2 = +∞

})
= 1.

The next step would be to perform a multifractal analysis of the exceptional

sets.

Suppose G = T. Let f ∈ C0(T) and ν ∈ (1/2,1).

Set E−(ν, f) =

{
(α, x) ∈ T2; lim sup

n

log |Sn,αf(x)|
logn

≥ ν
}
.

These sets have Lebesgue measure zero.

Open Q.: Can we majorize the Hausdorff dimension of E−(ν, f)?
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From a topological point of view,

the typical growth of Sn,uf(x) has order n.

Suppose ψ : N→ N and

Eψ(f) =

{
(u, x) ∈ G2 ; lim sup

n

|Sn,uf(x)|
ψ(n)

= +∞
}
.

T.: ??? Suppose that ψ : N→ N satisfies ψ(n) = o(n).

There exists a residual set R∗ ⊂ C0(G)×G2 such that

for any (f, u, x) ∈ R∗ we have (u, x) ∈ Eψ(f).

Kuratowski-Ulam theorem and Theorem ???⇒
there exists a residual set R ⊂ C0(G) such that,

for every f ∈ R, the set Eψ(f) is residual in G2.
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The last possibility is to fix x ∈ G and allow u to vary.
Without loss of generality, we may assume that x = 0.
”Topologically speaking” the typical growth of Sn,uf(0)
is not better than o(n):

Cor.: ♣ Suppose that ψ : N→ N satisfies ψ(n) = o(n).
There exists a residual set R ⊂ C0(G) such that
for any f ∈ R, the set {u ∈ G; (u,0) ∈ Eψ(f)} is residual in G.

Recall: Eψ(f) =

{
(u, x) ∈ G2 ; lim sup

n

|Sn,uf(x)|
ψ(n)

= +∞
}
.

The measure version:
Open Q.: Does there exist ν ∈ [1/2,1] such that
(i) for all γ > ν, for all f ∈ C0(G),

µ

({
u ∈ G; lim sup

n

Sn,uf(0)

nγ
≥ 1

})
= 0;

(ii) for all γ < ν, there exists a residual subset R of C0(G) such that,

for all f ∈ R, µ

({
u ∈ G; lim sup

n

Sn,uf(0)

nγ
= +∞

})
= 1?

It can be shown that ν = 1/2 works for (ii).
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For irrational rotations we get more precise statements.

Let us fix α ∈ R\Q and set

Fψ(f) =

{
x ∈ T; lim sup

n

|Sn,αf(x)|
ψ(n)

< +∞
}
.

When ψ(n) = nν, ν ∈ (0,1), we simply denote by Fν(f) the set Fψ(f).

By the results mentioned before Theorem ? :

λ
(
Fψ(f)

)
= 0 for f in a residual subset of C0(T),

where λ is the Lebesgue measure on T.

This is much stronger:

T.: ♦ For any ψ : N→ N with ψ(n) = o(n),

there exists a residual subset R of C0(T) such that,

for any f ∈ R, dimH(Fψ(f)) = 0.

There are also enhancements of meager sets,

for instance σ-porous sets:

Open Q.: Does there exist a residual subset R of C0(T) such that,

for any f ∈ R, Fψ(f) is σ-porous?

19



Results for Hölder functions f ∈ Cξ0(T), ξ ∈ (0,1).

f belongs to Cξ0(T) if it has zero mean and

if there exists a constant C > 0 such that, for all x, y ∈ T,

|f(x)− f(y)| ≤ C|x− y|ξ.
The infimum of such constants C is denoted by Lipξ(f).

For a function f ∈ Cξ0(T), we have better bounds on Sn,αf(x)

depending on ξ and on the arithmetical properties of α.

Koksma type inequalities ⇒
|Sn,αf(x)| ≤ n · Lipξ(f) (D∗n(α))ξ

where D∗n(α) is the discrepancy of the sequence (α,2α, . . . , nα):

|D∗n(α)| = sup
I⊂T

∣∣∣∣∣card{1 ≤ i ≤ n; iα ∈ I}
n

− |I|
∣∣∣∣∣ , where I is a subinterval of T.
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Recall:

Fν(f) =

{
x ∈ T; lim sup

n

|Sn,αf(x)|
nν

< +∞
}
.

If α has type 1 (for example, if α is an irrational algebraic number),

well-known estimates of the discrepancy ⇒
|Sn,αf(x)| = O(n1−ξ+ε) for all ε > 0.

In other words, for all ν > 1− ξ, Fν(f) = T.

For ν ≤ 1− ξ the Hausdorff dimension of Fν(f) cannot always be large:

T.: ♥ Let ξ ∈ (0,1). There exists f ∈ Cξ0(T) such that,

for all ν ∈ (0,1− ξ), dimH(Fν(f)) ≤
√

ξ

1− ν
.

This theorem is in stark contrast with a result of Fan and Schmeling 2003.

They study fast Birkhoff averages of subshifts.

In this case, the sets which correspond to Fν(f)

always have maximal dimension.
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Recall:

T.: ♥ Let ξ ∈ (0,1). There exists f ∈ Cξ0(T) such that,

for all ν ∈ (0,1− ξ), dimH(Fν(f)) ≤
√

ξ

1− ν
.

We prove slightly more.

Let Eξ be the closed subspace of Cξ0(T) defined by

Eξ =
{
f ∈ C0(T); ∀x, y ∈ T, |f(x)− f(y)| ≤ |x− y|ξ

}
=
{
f ∈ C0(T); Lipξ(f) ≤ 1

}
.

The space Eξ, equipped with the norm of the uniform convergence

is now again a separable complete metric space.

We prove:

T.: For all functions f in a residual subset of Eξ,

for all ν ∈ (0,1− ξ), dimH(Fν(f)) ≤
√

ξ

1− ν
.

Open Q.: Is the value
√

1−ξ
ν optimal? In particular,

it does not depend on the type of α, which may look surprizing.
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Coboundaries in Cξ0(T)

The natural norm in Cξ0(T) is given by

‖f‖ξ = sup
x∈T
|f(x)|+ sup

x,y∈T
x6=y

|f(x)− f(y)|
|x− y|ξ

.

One may wonder whether, in Theorem ♥ we have
residuality in (Cξ0(T), ‖ ‖ξ) instead of in (Eξ, ‖ ‖∞).
A natural way to do that would be to prove that
the coboundaries are dense in Cξ0(T).

This is not the case, which shows again that Cξ0(T) is a weird space.

In Cξ0(T) we denote the ball of radius r centered at f ∈ Cξ0(T)

by B
ξ
0(f, r), that is g ∈ Bξ0(f, r) if and only if ‖g − f‖ξ < r.

T.: ♠ For any α ∈ R \ Q for any ξ ∈ (0,1) there exists f ∈ Cξ0(T)

such that for any g ∈ Bξ0(f,0.1)

the function g is not a C0 (and hence not a Cξ0)-coboundary,
that is there is no u ∈ C0(T) such that g = u ◦Rα − u.
Hence C0-coboundaries are not dense in Cξ0(T).
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On the other hand to prove theorems

T.: ? Suppose that ψ : N→ N satisfies ψ(n) = o(n).

There exists a residual set R ⊂ C0(Ω) such that

for any f ∈ R, Eψ(f) is residual and of full µ-measure in Ω.

and

T.: ??? Suppose that ψ : N→ N satisfies ψ(n) = o(n).

There exists a residual set R∗ ⊂ C0(G)×G2 such that

for any (f, u, x) ∈ R∗ we have (u, x) ∈ Eψ(f).

We use that in the usual C0 topologies

if T is a uniquely ergodic transformation on Ω,

then the set of C0(Ω)-coboundaries for T ,

namely the set of functions g − g ◦ T for some g ∈ C0(Ω),

is dense in C0(Ω).

(see for instance Liardet, P. and Volný, D. 1997).

It is convenient to work with a coboundary

since its Birkhoff sums are uniformly bounded.

24


