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Expanding Lorenz maps

Expanding Lorenz maps are maps f : [0, 1]→ [0, 1] satisfying the
following three conditions:

there is a critical point c ∈ (0, 1) such that f is continuous
and strictly increasing on [0, c) and (c , 1];

limx→c− f (x) = 1 and limx→c+ f (x) = 0;

f is differentiable for all points not belonging to a finite set
F ⊆ [0, 1] and infx 6∈F f ′(x) > 1.

Remark

The last condition implies that the set
⋃

n∈N0 f
−n(c) is dense in

[0, 1].
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A brief historical overview

In 1976, Guckenheimer proposed a two-dimensional model for
the flow on branched manifold, the so-called geometric Lorenz
attractor.
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Standard doubling points construction

Elements in C := (
⋃∞

n=0 f
−n{c}) \ {0, 1} are doubled (we

perform a kind of Denjoy extension)

We obtain new space X, which is a Cantor set (with a proper
metric)

We define a continuous map f̂ : X→ X as follows: Let Ie be
an inserted „hole” in place of a point e ∈ C . Then we send its
endpoints into respective endpoints of the hole If (e), if there is
a hole related to f (e) or into the point f (e) if it was not
blown up (i.e. when it is 0 or 1).

See more details: P. Raith, Continuity of the Hausdorff
dimension for piecewise monotonic maps. Israel J. Math. 80
(1992), 97–133.
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Renormalizations of Lorenz maps

We say that f is a Lorenz map on [a, b], if taking the linear
increasing homeomorphism h : [a, b]→ [0, 1] the composition
h ◦ f ◦ h−1 is a Lorenz map on [0, 1].

Definition

Let f be an expanding Lorenz map. If there is a proper subinterval
(u, v) 3 c of (0, 1) and integers l , r > 1 such that the map
g : [u, v ]→ [u, v ] defined by

g(x) =

{
f l(x), if x ∈ [u, c),

f r (x), if x ∈ (c , v ],

is itself a Lorenz map on [u, v ], then we say that f is renormalizable
or that g is a renormalization of f and write shortly g = (f l , f r ).
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Renormalizations of Lorenz maps

Definition

We say that g = (f m, f k) is a minimal renormalization map of an
expanding Lorenz map f , if any other renormalization g̃ = (f s , f t)
of f satisfies s  m, t  k .

Definition

A nonempty set E ⊂ [0, 1] is said to be completely invariant under
f , if f (E ) = E = f −1(E ).
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Main motivation - Results of Ding

Theorem (Ding, 2011)

suppose E is a proper completely invariant closed set of f , put

e− = sup{x ∈ E , x < c}, e+ = inf{x ∈ E , x > c},

l = N((e−, c)), r = N((c , e+))

Then f l(e−) = e−, f r (e+) = e+ and the following map

RE f (x) =

{
f l(x) , x ∈ [f r (c+), c)

f r (x) , x ∈ (c , f l(c−)]

is a renormalization of f .

if g is a renormalization of f , then there exists a unique
proper completely invariant closed set B such that RB f = g .

Łukasz Cholewa (AGH) Renormalization in Lorenz maps



Main motivation - Results of Ding

Theorem (Ding, 2011)

suppose E is a proper completely invariant closed set of f , put

e− = sup{x ∈ E , x < c}, e+ = inf{x ∈ E , x > c},

l = N((e−, c)), r = N((c , e+))

Then f l(e−) = e−, f r (e+) = e+ and the following map

RE f (x) =

{
f l(x) , x ∈ [f r (c+), c)

f r (x) , x ∈ (c , f l(c−)]

is a renormalization of f .

if g is a renormalization of f , then there exists a unique
proper completely invariant closed set B such that RB f = g .

Łukasz Cholewa (AGH) Renormalization in Lorenz maps



Main motivation - Results of Ding

Theorem (Ding, 2011)

suppose E is a proper completely invariant closed set of f , put

e− = sup{x ∈ E , x < c}, e+ = inf{x ∈ E , x > c},

l = N((e−, c)), r = N((c , e+))

Then f l(e−) = e−, f r (e+) = e+ and the following map

RE f (x) =

{
f l(x) , x ∈ [f r (c+), c)

f r (x) , x ∈ (c , f l(c−)]

is a renormalization of f .

if g is a renormalization of f , then there exists a unique
proper completely invariant closed set B such that RB f = g .

Łukasz Cholewa (AGH) Renormalization in Lorenz maps



Main motivation - Results of Ding

Theorem (Ding, 2011)

Let f be an expanding Lorenz map with minimal period κ,
1 < κ <∞. Then we have the following statements:

f admits a unique κ-periodic orbit O.

D =
⋃∞

n=0 f
−n(O) is the unique minimal completely invariant

closed set of f .

f is renormalizable if and only if [0, 1] \ D 6= ∅. If f is
renormalizable, then RD f , the renormalization associated to
D, is the unique minimal renormalization of f .

The following trichotomy holds: (i) D = [0, 1], (ii) D = O,
(iii) D is a Cantor set.
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Transitivity of expanding Lorenz maps

Definition

We say that an expanding Lorenz map f is (topologically)
transitive if for every two open intervals U,V there is an integer
n > 0 such that f n(U) ∩ V 6= ∅.

Theorem (Ch., Oprocha)

Let f be a transitive and expanding Lorenz map and let f̂ be the
map induced on X. Then for every x ∈ X the set

⋃∞
k=0 f̂

−k(x) is
dense in X.

Corollary

If f is a transitive and expanding Lorenz map without fixed points,
then any proper closed set in [0, 1] is not completely invariant for f .
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Example 1 - Renormalizable and transitive map

P. Oprocha, P. Potorski, P. Raith, Mixing properties in
expanding Lorenz maps. Adv. Math. 343 (2019), 712–755

Let f : [0, 1]→ [0, 1] be given by

f (x) =
√

2x +
2−
√

2
2

(mod 1)

=


√

2x + 2−
√
2
2 , if x ∈

[
0, 12

)
,

√
2x + 2−

√
2
2 − 1, if x ∈ [12 , 1],

.

Note that f is a renormalizable (g = (f 2, f 2)) and transitive
map.
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Example 1 - Graphs of f (x) and f 2(x)

0 0.5f(0) f(1) 1
0

0.5

f(0)

f(1)

1

0 0.5f(0) f(1) 1
0

0.5

f(0)

f(1)

1
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Example 1 - Renormalizable and transitive map

Theorem (Ding, 2011)

suppose E is a proper completely invariant closed set of f , put

e− = sup{x ∈ E , x < c}, e+ = inf{x ∈ E , x > c},

l = N((e−, c)), r = N((c , e+))
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Candidates for a completely invariant sets - Idea of Ding

Suppose g = (f m, f k) is a renormalization map of an expanding
Lorenz map f on [u, v ] := [f k(c+), f

m(c−)].

Put

Fg = {x ∈ [0, 1] : Orb(x) ∩ (u, v) 6= ∅},

and

Jg = [0, 1] \ Fg = {x ∈ [0, 1] : Orb(x) ∩ (u, v) = ∅}.

Question

When Jg is a proper completely invariant closed subset of [0, 1]?
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Primary n(k)-cycles

Definition (Glendinning, 1990)

A periodic orbit {zj = f j(z0) : j ∈ {0, . . . , n− 1}} of period n of an
expanding Lorenz map f is an n(k)-cycle if its points satisfy

z0 < z1 < · · · < zn−k−1 < c < zn−k < · · · < zn−1

if additionally

f (zj) = zj+k(mod n) for all j = 0, 1, . . . , n − 1;

the integers k and n are coprime;

zk−1 ¬ f (0) and f (1) ¬ zk

then the n(k)-cycle is primary.
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Primary n(k)-cycles, renormalizations and completely
invariant sets

Theorem (Ch., Oprocha)

Let f be an expanding Lorenz map with a primary n(k)-cycle

z0 < z1 < · · · < zn−k−1 < c < zn−k < · · · < zn−1.

Then the following conditions hold:

the following g : [u, v ]→ [u, v ] provided below is a well
defined expanding Lorenz map which additionally is a
renormalization of f :

g(x) =

{
f n(x); x ∈ [u, c)

f n(x); x ∈ (c , v ]
,

where [u, v ] := [f n−1(0), f n−1(1)].
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Primary n(k)-cycles, renormalizations and completely
invariant sets

Theorem (Ch., Oprocha)

If g̃ = (f l , f r ) is a renormalization of f and at least one of the
numbers l and r is greater or equal to n, then n divides both l
and r .

if zk−1 = f (0) or zk = f (1), then F̂g is not completely
invariant.
if zk−1 6= f (0) and zk 6= f (1) then:

Jg is a completely invariant proper subset of [0, 1].
zn−k−1 = sup{x ∈ Jg , x < c} and zn−k = inf{x ∈ Jg , x > c}.
RJg f = g
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Example 1 again

0 0.5f(0) f(1) 1
0

0.5

f(0)

f(1)

1

O = {z0, z1} = {f (0), f (1)} forms a primary 2(1)-cycle
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Example 2 - Three renormalizations with the same set Jg

Denote

W := −8 ·
(

3

9 +
√

849

) 1
3
+
(

2
(

9 +
√

849
)) 1
3

β :=

√√
W +

√
−W + 12√

W

2
2
3 · 3

1
6

≈ 1.1048

α :=
1− β + β3

β3 + β4
≈ 0.4381

The map f (x) = βx + α(mod 1) is expanding Lorenz map
with critical point c = 1−α

β ≈ 0.5085.
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Example 2 - Three renormalizations with the same set Jg

q1q2 q3 q4q5

p1 p2p3 p4p5 p6p7

Above we present sketch of relations between points
pi = f i (0), qi = f i (1) and c (red dot),

The map f has a primary 2(1)-cycle {z0, z1} with z0 6= f (0)
and f (1) 6= z1,
Hence Jg associated to renormalization g = (f 2, f 2) is a
closed, completely invariant and proper subset of [0, 1],
Observe that

[û, v̂ ] := [f 6(c+), f
8(c−)] = [f 5(0+), f (1−)] = [f 6(c+), f

2(c−)]

so on [û, v̂ ] we have two well defined renormalizations
ĝ = (f 8, f 6) and g = (f 2, f 6)
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[û, v̂ ] := [f 6(c+), f
8(c−)] = [f 5(0+), f (1−)] = [f 6(c+), f

2(c−)]
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Example 2 - Three renormalizations with the same set Jg

q1q2 q3 q4q5

p1 p2p3 p4p5 p6p7

Clearly (û, v̂) ⊂ (f (0), f (1)) = (u, v), while
f 4((u, û)) = (û, v̂) and f 2(û) ∈ (û, v̂),

Therefore Fĝ = Fg , so also Jĝ = Jg

All three renormalizations define the same completely
invariant set Jg , while only g can be recovered from Jg by
procedure presented in Ding’s Theorem.
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Periodic renormalizations

D :=
⋃∞

n=0 f
−n(O), where O is a minimal cycle of f

Theorem (Ch., Oprocha)

Let f be an expanding Lorenz map with a primary n(k)-cycle

z0 < z1 < · · · < zn−k−1 < c < zn−k < · · · < zn−1

such that zk−1 6= f (0) and zk 6= f (1). Then the renormalization
RD f of f associated to minimal cycle O of f is well defined,
periodic and equal to g = (f n, f n).
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Example 3 - RDf is not the minimal renormalization

Consider an expanding Lorenz map f : [0, 1]→ [0, 1] defined
by f (x) = βx + α(mod 1), where

β :=
9 5
√

2
10
≈ 1.03383, α :=

5
√

2
3
≈ 0.38289,

Denote

z0 :=
α0

1− β5
, where α0 := β4α+β3α+β2α+βα−β2+α−1.

Then z0 ≈ 0.11227 and the orbit
O := Orb(z0) = {z0, z1, z2, z3, z4} forms a primary 5(2)-cycle
for f .
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Example 3 - RDf is not the minimal renormalization

q1 q2q3 q4

z0 z2 z4z1 z3p1 p2p3 p4

Above we present sketch of relations between points
pi = f i (0), qi = f i (1), zi and c (red dot),

The map f has renormalization g = (f 5, f 5) = RD f , where
D :=

⋃∞
i=0 f

−i (O),

But there exists another renormalization g̃ = (f 3, f 2),

So the renormalization g associated to set D is not the
minimal renormalization of f .
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Example 3 - RDf is not the minimal renormalization

Theorem (Ding, 2011)

Let f be an expanding Lorenz map with minimal period κ,
1 < κ <∞. Then we have the following statements:

f admits a unique κ-periodic orbit O.

D =
⋃∞

n=0 f
−n(O) is the unique minimal completely invariant

closed set of f .

f is renormalizable if and only if [0, 1] \ D 6= ∅. If f is
renormalizable, then RD f , the renormalization associated to
D, is the unique minimal renormalization of f .

The following trichotomy holds: (i) D = [0, 1], (ii) D = O,
(iii) D is a Cantor set.
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The end

Thank you for your attention!
Děkuji za pozornost!
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