Renormalization in Lorenz maps - completely invariant sets and periodic orbits

Łukasz Cholewa

AGH University of Science and Technology, Poland

18 czerwca 2021

The 9th Visegrad Conference Dynamical Systems, Prague 2021

The talk is based on joint work with Piotr Oprocha

Ł. Cholewa, P. Oprocha, *Renormalization in Lorenz maps – completely invariant sets and periodic orbits*, preprint, arXiv:2104.00110.

Presentation plan

Plan

- Introduction
- Main motivation Two theorems of Yiming Ding
- Examples and results related to Ding's theorems

Expanding Lorenz maps are maps $f: [0,1] \rightarrow [0,1]$ satisfying the following three conditions:

Expanding Lorenz maps are maps $f: [0,1] \rightarrow [0,1]$ satisfying the following three conditions:

• there is a critical point $c \in (0,1)$ such that f is continuous and strictly increasing on [0,c) and (c,1];

Expanding Lorenz maps are maps $f: [0,1] \rightarrow [0,1]$ satisfying the following three conditions:

- there is a critical point $c \in (0,1)$ such that f is continuous and strictly increasing on [0,c) and (c,1];
- $\lim_{x \to c^{-}} f(x) = 1$ and $\lim_{x \to c^{+}} f(x) = 0$;

Expanding Lorenz maps are maps $f: [0,1] \rightarrow [0,1]$ satisfying the following three conditions:

- there is a critical point $c \in (0,1)$ such that f is continuous and strictly increasing on [0,c) and (c,1];
- $\lim_{x \to c^{-}} f(x) = 1$ and $\lim_{x \to c^{+}} f(x) = 0$;
- f is differentiable for all points not belonging to a finite set $F \subseteq [0,1]$ and $\inf_{x \notin F} f'(x) > 1$.

Expanding Lorenz maps are maps $f: [0,1] \rightarrow [0,1]$ satisfying the following three conditions:

- there is a critical point $c \in (0,1)$ such that f is continuous and strictly increasing on [0,c) and (c,1];
- $\lim_{x \to c^{-}} f(x) = 1$ and $\lim_{x \to c^{+}} f(x) = 0$;
- f is differentiable for all points not belonging to a finite set $F \subseteq [0,1]$ and $\inf_{x \notin F} f'(x) > 1$.

Remark

The last condition implies that the set $\bigcup_{n\in\mathbb{N}_0} f^{-n}(c)$ is dense in [0,1].

A brief historical overview

334 Gerhard Keller and Matthias St. Pierre

Fig. 1. The left hand side shows a phase portrait of the flow on the branched manifold and the right hand side the first return map to the cross section $\Sigma = [p, q]$.

 In 1976, Guckenheimer proposed a two-dimensional model for the flow on branched manifold, the so-called geometric Lorenz attractor.

• Elements in $C := (\bigcup_{n=0}^{\infty} f^{-n}\{c\}) \setminus \{0,1\}$ are doubled (we perform a kind of Denjoy extension)

- Elements in $C := (\bigcup_{n=0}^{\infty} f^{-n}\{c\}) \setminus \{0,1\}$ are doubled (we perform a kind of Denjoy extension)
- We obtain new space X, which is a Cantor set (with a proper metric)

- Elements in $C := (\bigcup_{n=0}^{\infty} f^{-n}\{c\}) \setminus \{0,1\}$ are doubled (we perform a kind of Denjoy extension)
- We obtain new space X, which is a Cantor set (with a proper metric)
- ullet We define a continuous map $\hat{f}:\mathbb{X} o \mathbb{X}$ as follows:

- Elements in $C := (\bigcup_{n=0}^{\infty} f^{-n}\{c\}) \setminus \{0,1\}$ are doubled (we perform a kind of Denjoy extension)
- We obtain new space X, which is a Cantor set (with a proper metric)
- We define a continuous map $\hat{f}: \mathbb{X} \to \mathbb{X}$ as follows: Let I_e be an inserted "hole" in place of a point $e \in C$. Then we send its endpoints into respective endpoints of the hole $I_{f(e)}$, if there is a hole related to f(e) or into the point f(e) if it was not blown up (i.e. when it is 0 or 1).

- Elements in $C := (\bigcup_{n=0}^{\infty} f^{-n}\{c\}) \setminus \{0,1\}$ are doubled (we perform a kind of Denjoy extension)
- We obtain new space X, which is a Cantor set (with a proper metric)
- We define a continuous map $\hat{f}: \mathbb{X} \to \mathbb{X}$ as follows: Let I_e be an inserted "hole" in place of a point $e \in C$. Then we send its endpoints into respective endpoints of the hole $I_{f(e)}$, if there is a hole related to f(e) or into the point f(e) if it was not blown up (i.e. when it is 0 or 1).
- See more details: P. Raith, Continuity of the Hausdorff dimension for piecewise monotonic maps. Israel J. Math. 80 (1992), 97–133.

• We say that f is a Lorenz map on [a,b], if taking the linear increasing homeomorphism $h:[a,b] \to [0,1]$ the composition $h \circ f \circ h^{-1}$ is a Lorenz map on [0,1].

• We say that f is a Lorenz map on [a,b], if taking the linear increasing homeomorphism $h\colon [a,b]\to [0,1]$ the composition $h\circ f\circ h^{-1}$ is a Lorenz map on [0,1].

Definition

Let f be an expanding Lorenz map. If there is a proper subinterval $(u,v) \ni c$ of (0,1) and integers l,r>1 such that the map $g:[u,v] \to [u,v]$ defined by

$$g(x) = \begin{cases} f^{I}(x), & \text{if } x \in [u, c), \\ f^{r}(x), & \text{if } x \in (c, v], \end{cases}$$

is itself a Lorenz map on [u, v], then we say that f is renormalizable or that g is a renormalization of f and write shortly $g = (f^l, f^r)$.

Definition

We say that $g = (f^m, f^k)$ is a minimal renormalization map of an expanding Lorenz map f, if any other renormalization $\tilde{g} = (f^s, f^t)$ of f satisfies $s \ge m$, $t \ge k$.

Definition

We say that $g = (f^m, f^k)$ is a minimal renormalization map of an expanding Lorenz map f, if any other renormalization $\tilde{g} = (f^s, f^t)$ of f satisfies $s \ge m$, $t \ge k$.

Definition

A nonempty set $E \subset [0,1]$ is said to be completely invariant under f, if $f(E) = E = f^{-1}(E)$.

Theorem (Ding, 2011)

suppose E is a proper completely invariant closed set of f, put

$$e_{-} = \sup\{x \in E, x < c\}, \qquad e_{+} = \inf\{x \in E, x > c\},$$
 $I = N((e_{-}, c)), \qquad r = N((c, e_{+}))$

Then $f'(e_{-})=e_{-}$, $f^{r}(e_{+})=e_{+}$ and the following map

$$R_{E}f(x) = \begin{cases} f'(x) & , x \in [f'(c_{+}), c) \\ f'(x) & , x \in (c, f'(c_{-})) \end{cases}$$

is a renormalization of f.

Theorem (Ding, 2011)

• suppose E is a proper completely invariant closed set of f, put

$$e_{-} = \sup\{x \in E, x < c\}, \qquad e_{+} = \inf\{x \in E, x > c\},$$
 $I = N((e_{-}, c)), \qquad r = N((c, e_{+}))$

Then $f'(e_{-}) = e_{-}$, $f'(e_{+}) = e_{+}$ and the following map

$$R_{E}f(x) = \begin{cases} f'(x) & , x \in [f'(c_{+}), c) \\ f'(x) & , x \in (c, f'(c_{-})) \end{cases}$$

is a renormalization of f.

• if g is a renormalization of f, then there exists a unique proper completely invariant closed set B such that $R_B f = g$.

Theorem (Ding, 2011)

Let f be an expanding Lorenz map with minimal period κ , $1 < \kappa < \infty$. Then we have the following statements:

- f admits a unique κ -periodic orbit O.
- $D = \overline{\bigcup_{n=0}^{\infty} f^{-n}(O)}$ is the unique minimal completely invariant closed set of f.
- f is renormalizable if and only if $[0,1] \setminus D \neq \emptyset$. If f is renormalizable, then $R_D f$, the renormalization associated to D, is the unique minimal renormalization of f.
- The following trichotomy holds: (i) D = [0, 1], (ii) D = O, (iii) D is a Cantor set.

Theorem (Ding, 2011)

Let f be an expanding Lorenz map with minimal period κ , $1 < \kappa < \infty$. Then we have the following statements:

- f admits a unique κ -periodic orbit O.
- $D = \overline{\bigcup_{n=0}^{\infty} f^{-n}(O)}$ is the unique minimal completely invariant closed set of f.
- f is renormalizable if and only if $[0,1] \setminus D \neq \emptyset$. If f is renormalizable, then $R_D f$, the renormalization associated to D, is the unique minimal renormalization of f.
- The following trichotomy holds: (i) D = [0,1], (ii) D = O, (iii) D is a Cantor set.

Definition

We say that an expanding Lorenz map f is (topologically) transitive if for every two open intervals U, V there is an integer n > 0 such that $f^n(U) \cap V \neq \emptyset$.

Definition

We say that an expanding Lorenz map f is (topologically) transitive if for every two open intervals U, V there is an integer n > 0 such that $f^n(U) \cap V \neq \emptyset$.

Theorem (Ch., Oprocha)

Let f be a transitive and expanding Lorenz map and let \hat{f} be the map induced on \mathbb{X} . Then for every $x \in \mathbb{X}$ the set $\bigcup_{k=0}^{\infty} \hat{f}^{-k}(x)$ is dense in \mathbb{X} .

Definition

We say that an expanding Lorenz map f is (topologically) transitive if for every two open intervals U, V there is an integer n > 0 such that $f^n(U) \cap V \neq \emptyset$.

Theorem (Ch., Oprocha)

Let f be a transitive and expanding Lorenz map and let \hat{f} be the map induced on \mathbb{X} . Then for every $x \in \mathbb{X}$ the set $\bigcup_{k=0}^{\infty} \hat{f}^{-k}(x)$ is dense in \mathbb{X} .

Corollary

If f is a transitive and expanding Lorenz map without fixed points, then any proper closed set in [0,1] is not completely invariant for f.

• P. Oprocha, P. Potorski, P. Raith, *Mixing properties in expanding Lorenz maps*. Adv. Math. **343** (2019), 712–755

- P. Oprocha, P. Potorski, P. Raith, Mixing properties in expanding Lorenz maps. Adv. Math. 343 (2019), 712–755
- Let $f: [0,1] \rightarrow [0,1]$ be given by

$$f(x) = \sqrt{2}x + \frac{2 - \sqrt{2}}{2} \pmod{1}$$

$$= \begin{cases} \sqrt{2}x + \frac{2 - \sqrt{2}}{2}, & \text{if } x \in \left[0, \frac{1}{2}\right), \\ \sqrt{2}x + \frac{2 - \sqrt{2}}{2} - 1, & \text{if } x \in \left[\frac{1}{2}, 1\right], \end{cases}$$

- P. Oprocha, P. Potorski, P. Raith, Mixing properties in expanding Lorenz maps. Adv. Math. 343 (2019), 712–755
- Let $f: [0,1] \rightarrow [0,1]$ be given by

$$f(x) = \sqrt{2}x + \frac{2 - \sqrt{2}}{2} \pmod{1}$$

$$= \begin{cases} \sqrt{2}x + \frac{2 - \sqrt{2}}{2}, & \text{if } x \in \left[0, \frac{1}{2}\right), \\ \sqrt{2}x + \frac{2 - \sqrt{2}}{2} - 1, & \text{if } x \in \left[\frac{1}{2}, 1\right], \end{cases}$$

• Note that f is a renormalizable $(g = (f^2, f^2))$ and transitive map.

Example 1 - Graphs of f(x) and $f^2(x)$

Theorem (Ding, 2011)

• suppose E is a proper completely invariant closed set of f, put

$$e_- = \sup\{x \in E, x < c\}, \qquad e_+ = \inf\{x \in E, x > c\},$$
 $I = N((e_-, c)), \qquad r = N((c, e_+))$ sen $f^I(e_-) = e_-$, $f^r(e_+) = e_+$ and the following map

$$R_{E}f(x) = \begin{cases} f'(x) & , x \in [f'(c_{+}), c) \\ f''(x) & , x \in (c, f'(c_{-})] \end{cases}$$

is a renormalization of f.

• if g is a renormalization of f, then there exists a unique proper completely invariant closed set B such that $R_B f = g$.

Candidates for a completely invariant sets - Idea of Ding

Suppose $g = (f^m, f^k)$ is a renormalization map of an expanding Lorenz map f on $[u, v] := [f^k(c_+), f^m(c_-)]$.

Candidates for a completely invariant sets - Idea of Ding

Suppose $g = (f^m, f^k)$ is a renormalization map of an expanding Lorenz map f on $[u, v] := [f^k(c_+), f^m(c_-)]$. Put

$$F_g = \{x \in [0,1] : \operatorname{Orb}(x) \cap (u,v) \neq \emptyset\},\$$

Candidates for a completely invariant sets - Idea of Ding

Suppose $g = (f^m, f^k)$ is a renormalization map of an expanding Lorenz map f on $[u, v] := [f^k(c_+), f^m(c_-)]$. Put

$$F_g = \{ x \in [0,1] : Orb(x) \cap (u,v) \neq \emptyset \},$$

and

$$J_g = [0,1] \setminus F_g = \{x \in [0,1] : Orb(x) \cap (u,v) = \emptyset\}.$$

Candidates for a completely invariant sets - Idea of Ding

Suppose $g = (f^m, f^k)$ is a renormalization map of an expanding Lorenz map f on $[u, v] := [f^k(c_+), f^m(c_-)]$. Put

$$F_g = \{ x \in [0,1] : Orb(x) \cap (u,v) \neq \emptyset \},$$

and

$$J_g = [0,1] \setminus F_g = \{x \in [0,1] : Orb(x) \cap (u,v) = \emptyset\}.$$

Question

When J_g is a proper completely invariant closed subset of [0,1]?

Definition (Glendinning, 1990)

A periodic orbit $\{z_j = f^j(z_0) : j \in \{0, ..., n-1\}\}$ of period n of an expanding Lorenz map f is an n(k)-cycle if its points satisfy

$$z_0 < z_1 < \cdots < z_{n-k-1} < c < z_{n-k} < \cdots < z_{n-1}$$

Definition (Glendinning, 1990)

A periodic orbit $\{z_j = f^j(z_0) : j \in \{0, ..., n-1\}\}$ of period n of an expanding Lorenz map f is an n(k)-cycle if its points satisfy

$$z_0 < z_1 < \dots < z_{n-k-1} < c < z_{n-k} < \dots < z_{n-1}$$

if additionally

•
$$f(z_j) = z_{j+k \pmod{n}}$$
 for all $j = 0, 1, ..., n-1$;

Definition (Glendinning, 1990)

A periodic orbit $\{z_j = f^j(z_0) : j \in \{0, ..., n-1\}\}$ of period n of an expanding Lorenz map f is an n(k)-cycle if its points satisfy

$$z_0 < z_1 < \dots < z_{n-k-1} < c < z_{n-k} < \dots < z_{n-1}$$

if additionally

- $f(z_j) = z_{j+k \pmod{n}}$ for all j = 0, 1, ..., n-1;
- the integers k and n are coprime;

Definition (Glendinning, 1990)

A periodic orbit $\{z_j = f^j(z_0) : j \in \{0, ..., n-1\}\}$ of period n of an expanding Lorenz map f is an n(k)-cycle if its points satisfy

$$z_0 < z_1 < \dots < z_{n-k-1} < c < z_{n-k} < \dots < z_{n-1}$$

if additionally

- $f(z_j) = z_{j+k \pmod{n}}$ for all j = 0, 1, ..., n-1;
- the integers k and n are coprime;
- $z_{k-1} \leqslant f(0)$ and $f(1) \leqslant z_k$

Definition (Glendinning, 1990)

A periodic orbit $\{z_j = f^j(z_0) : j \in \{0, ..., n-1\}\}$ of period n of an expanding Lorenz map f is an n(k)-cycle if its points satisfy

$$z_0 < z_1 < \dots < z_{n-k-1} < c < z_{n-k} < \dots < z_{n-1}$$

if additionally

- $f(z_j) = z_{j+k \pmod{n}}$ for all j = 0, 1, ..., n-1;
- the integers k and n are coprime;
- $z_{k-1} \le f(0)$ and $f(1) \le z_k$

then the n(k)-cycle is primary.

Theorem (Ch., Oprocha)

Let f be an expanding Lorenz map with a primary n(k)-cycle

$$z_0 < z_1 < \cdots < z_{n-k-1} < c < z_{n-k} < \cdots < z_{n-1}.$$

Theorem (Ch., Oprocha)

Let f be an expanding Lorenz map with a primary n(k)-cycle

$$z_0 < z_1 < \cdots < z_{n-k-1} < c < z_{n-k} < \cdots < z_{n-1}.$$

Then the following conditions hold:

 the following g: [u, v] → [u, v] provided below is a well defined expanding Lorenz map which additionally is a renormalization of f:

$$g(x) = \begin{cases} f^n(x); & x \in [u, c) \\ f^n(x); & x \in (c, v] \end{cases},$$

where
$$[u, v] := [f^{n-1}(0), f^{n-1}(1)].$$

Theorem (Ch., Oprocha)

• If $\tilde{g} = (f^l, f^r)$ is a renormalization of f and at least one of the numbers l and r is greater or equal to n, then n divides both l and r.

Theorem (Ch., Oprocha)

- If $\tilde{g} = (f^l, f^r)$ is a renormalization of f and at least one of the numbers l and r is greater or equal to n, then n divides both l and r.
- if $z_{k-1} = f(0)$ or $z_k = f(1)$, then \hat{F}_g is not completely invariant.

Theorem (Ch., Oprocha)

- If $\tilde{g} = (f^l, f^r)$ is a renormalization of f and at least one of the numbers l and r is greater or equal to n, then n divides both l and r.
- if $z_{k-1} = f(0)$ or $z_k = f(1)$, then \hat{F}_g is not completely invariant.
- if $z_{k-1} \neq f(0)$ and $z_k \neq f(1)$ then:
 - J_g is a completely invariant proper subset of [0,1].
 - $z_{n-k-1} = \sup\{x \in J_g, x < c\}$ and $z_{n-k} = \inf\{x \in J_g, x > c\}$.
 - $R_{J_g}f = g$

Example 1 again

Example 1 again

• $O = \{z_0, z_1\} = \{f(0), f(1)\}$ forms a primary 2(1)-cycle

Theorem (Ch., Oprocha)

- If $\tilde{g} = (f^l, f^r)$ is a renormalization of f and at least one of the numbers l and r is greater or equal to n, then n divides both l and r.
- if $z_{k-1} = f(0)$ or $z_k = f(1)$, then \hat{F}_g is not completely invariant.
- if $z_{k-1} \neq f(0)$ and $z_k \neq f(1)$ then:
 - J_g is a completely invariant proper subset of [0,1].
 - $z_{n-k-1} = \sup\{x \in J_g, x < c\}$ and $z_{n-k} = \inf\{x \in J_g, x > c\}$.
 - $R_{J_g}f = g$

Denote

$$W := -8 \cdot \left(\frac{3}{9 + \sqrt{849}}\right)^{\frac{1}{3}} + \left(2\left(9 + \sqrt{849}\right)\right)^{\frac{1}{3}}$$
$$\beta := \frac{\sqrt{\sqrt{W} + \sqrt{-W + \frac{12}{\sqrt{W}}}}}{2^{\frac{2}{3}} \cdot 3^{\frac{1}{6}}} \approx 1.1048$$
$$\alpha := \frac{1 - \beta + \beta^3}{\beta^3 + \beta^4} \approx 0.4381$$

Denote

$$W := -8 \cdot \left(\frac{3}{9 + \sqrt{849}}\right)^{\frac{1}{3}} + \left(2\left(9 + \sqrt{849}\right)\right)^{\frac{1}{3}}$$
$$\beta := \frac{\sqrt{\sqrt{W} + \sqrt{-W + \frac{12}{\sqrt{W}}}}}{2^{\frac{2}{3}} \cdot 3^{\frac{1}{6}}} \approx 1.1048$$
$$\alpha := \frac{1 - \beta + \beta^3}{\beta^3 + \beta^4} \approx 0.4381$$

• The map $f(x) = \beta x + \alpha \pmod{1}$ is expanding Lorenz map with critical point $c = \frac{1-\alpha}{\beta} \approx 0.5085$.

• Above we present sketch of relations between points $p_i = f^i(0)$, $q_i = f^i(1)$ and c (red dot),

- Above we present sketch of relations between points $p_i = f^i(0)$, $q_i = f^i(1)$ and c (red dot),
- The map f has a primary 2(1)-cycle $\{z_0, z_1\}$ with $z_0 \neq f(0)$ and $f(1) \neq z_1$,

- Above we present sketch of relations between points $p_i = f^i(0)$, $q_i = f^i(1)$ and c (red dot),
- The map f has a primary 2(1)-cycle $\{z_0, z_1\}$ with $z_0 \neq f(0)$ and $f(1) \neq z_1$,
- Hence J_g associated to renormalization $g=(f^2,f^2)$ is a closed, completely invariant and proper subset of [0,1],

- Above we present sketch of relations between points $p_i = f^i(0)$, $q_i = f^i(1)$ and c (red dot),
- The map f has a primary 2(1)-cycle $\{z_0, z_1\}$ with $z_0 \neq f(0)$ and $f(1) \neq z_1$,
- Hence J_g associated to renormalization $g = (f^2, f^2)$ is a closed, completely invariant and proper subset of [0, 1],
- Observe that

$$[\hat{u},\hat{v}] := [f^6(c_+),f^8(c_-)] = [f^5(0_+),f(1_-)] = [f^6(c_+),f^2(c_-)]$$

so on $[\hat{u}, \hat{v}]$ we have two well defined renormalizations $\hat{g} = (f^8, f^6)$ and $\overline{g} = (f^2, f^6)$

Example 2 - Three renormalizations with the same set $J_{\!\scriptscriptstyle g}$

• Clearly $(\hat{u}, \hat{v}) \subset (f(0), f(1)) = (u, v)$, while $f^4((u, \hat{u})) = (\hat{u}, \hat{v})$ and $f^2(\hat{u}) \in (\hat{u}, \hat{v})$,

- Clearly $(\hat{u}, \hat{v}) \subset (f(0), f(1)) = (u, v)$, while $f^4((u, \hat{u})) = (\hat{u}, \hat{v})$ and $f^2(\hat{u}) \in (\hat{u}, \hat{v})$,
- ullet Therefore $F_{\hat{g}}=F_{g}$, so also $J_{\hat{g}}=J_{g}$

- Clearly $(\hat{u}, \hat{v}) \subset (f(0), f(1)) = (u, v)$, while $f^4((u, \hat{u})) = (\hat{u}, \hat{v})$ and $f^2(\hat{u}) \in (\hat{u}, \hat{v})$,
- Therefore $F_{\hat{g}} = F_g$, so also $J_{\hat{g}} = J_g$
- All three renormalizations define the same completely invariant set J_g , while only g can be recovered from J_g by procedure presented in Ding's Theorem.

Periodic renormalizations

Periodic renormalizations

• $D := \overline{\bigcup_{n=0}^{\infty} f^{-n}(O)}$, where O is a minimal cycle of f

Periodic renormalizations

• $D := \overline{\bigcup_{n=0}^{\infty} f^{-n}(O)}$, where O is a minimal cycle of f

Theorem (Ch., Oprocha)

Let f be an expanding Lorenz map with a primary n(k)-cycle

$$z_0 < z_1 < \dots < z_{n-k-1} < c < z_{n-k} < \dots < z_{n-1}$$

such that $z_{k-1} \neq f(0)$ and $z_k \neq f(1)$. Then the renormalization $R_D f$ of f associated to minimal cycle O of f is well defined, periodic and equal to $g = (f^n, f^n)$.

• Consider an expanding Lorenz map $f: [0,1] \to [0,1]$ defined by $f(x) = \beta x + \alpha \pmod{1}$, where

$$\beta := \frac{9\sqrt[5]{2}}{10} \approx 1.03383, \quad \alpha := \frac{\sqrt[5]{2}}{3} \approx 0.38289,$$

• Consider an expanding Lorenz map $f: [0,1] \rightarrow [0,1]$ defined by $f(x) = \beta x + \alpha \pmod{1}$, where

$$\beta := \frac{9\sqrt[5]{2}}{10} \approx 1.03383, \quad \alpha := \frac{\sqrt[5]{2}}{3} \approx 0.38289,$$

Denote

$$z_0 := \frac{\alpha_0}{1-\beta^5}$$
, where $\alpha_0 := \beta^4 \alpha + \beta^3 \alpha + \beta^2 \alpha + \beta \alpha - \beta^2 + \alpha - 1$.

• Consider an expanding Lorenz map $f: [0,1] \rightarrow [0,1]$ defined by $f(x) = \beta x + \alpha \pmod{1}$, where

$$\beta := \frac{9\sqrt[5]{2}}{10} \approx 1.03383, \quad \alpha := \frac{\sqrt[5]{2}}{3} \approx 0.38289,$$

Denote

$$z_0 := \frac{\alpha_0}{1 - \beta^5}$$
, where $\alpha_0 := \beta^4 \alpha + \beta^3 \alpha + \beta^2 \alpha + \beta \alpha - \beta^2 + \alpha - 1$.

• Then $z_0 \approx 0.11227$ and the orbit $O := Orb(z_0) = \{z_0, z_1, z_2, z_3, z_4\}$ forms a primary 5(2)-cycle for f.

• Above we present sketch of relations between points $p_i = f^i(0)$, $q_i = f^i(1)$, z_i and c (red dot),

- Above we present sketch of relations between points $p_i = f^i(0)$, $q_i = f^i(1)$, z_i and c (red dot),
- The map f has renormalization $g=(f^5,f^5)=R_Df$, where $D:=\overline{\bigcup_{i=0}^{\infty}f^{-i}(O)}$,

- Above we present sketch of relations between points $p_i = f^i(0)$, $q_i = f^i(1)$, z_i and c (red dot),
- The map f has renormalization $g=(f^5,f^5)=R_Df$, where $D:=\overline{\bigcup_{i=0}^{\infty}f^{-i}(O)}$,
- But there exists another renormalization $\tilde{g} = (f^3, f^2)$,

- Above we present sketch of relations between points $p_i = f^i(0)$, $q_i = f^i(1)$, z_i and c (red dot),
- The map f has renormalization $g = (f^5, f^5) = R_D f$, where $D := \overline{\bigcup_{i=0}^{\infty} f^{-i}(O)}$,
- But there exists another renormalization $\tilde{g} = (f^3, f^2)$,
- So the renormalization g associated to set D is not the minimal renormalization of f.

Theorem (Ding, 2011)

Let f be an expanding Lorenz map with minimal period κ , $1 < \kappa < \infty$. Then we have the following statements:

- f admits a unique κ -periodic orbit O.
- $D = \bigcup_{n=0}^{\infty} f^{-n}(O)$ is the unique minimal completely invariant closed set of f.
- f is renormalizable if and only if $[0,1] \setminus D \neq \emptyset$. If f is renormalizable, then $R_D f$, the renormalization associated to D, is the unique minimal renormalization of f.
- The following trichotomy holds: (i) D = [0, 1], (ii) D = O, (iii) D is a Cantor set.

Bibliography

- L. Cholewa, P. Oprocha, Renormalization in Lorenz maps completely invariant sets and periodic orbits, preprint, arXiv:2104.00110.
- H. Cui, Y. Ding, Renormalization and conjugacy of piecewise linear Lorenz maps, Adv. Math. **271** (2015), 235–272.
- Y. Ding, Renormalization and α -limit set for expanding Lorenz maps. Discrete Contin. Dyn. Syst. **29** (2011), 979–999.

Bibliography

- G. Keller, M. St. Pierre, *Topological and measurable dynamics of Lorenz maps*. Ergodic theory, analysis, and efficient simulation of dynamical systems, 333–361, Springer, Berlin, 2001.
- P. Oprocha, P. Potorski, P. Raith, *Mixing properties in expanding Lorenz maps*. Adv. Math. **343** (2019), 712–755
- P. Raith, Continuity of the Hausdorff dimension for piecewise monotonic maps. Israel J. Math. **80** (1992), 97–133.

The end

Thank you for your attention! Děkuji za pozornost!