Pseudo-arc as attractor in the disk: topological and measure-theoretical aspects

Jernej Činč
University of Vienna and IT4Innovations Ostrava

$$
\text { 14.06.2021, Visegrad } 2021
$$

Joint work with Piotr Oprocha (AGH Krakow)

Motivation and the first result

Thm (Bing, 1951): For any manifold M of dimension at least 2, the set of subcontinua homeomorphic to the pseudo-arc is a dense G_{δ} subset of the set of all subcontinua of M.

Thm (Block, Keesling, Uspenskij, 1999): Set of maps $f \in C(I)$ for which $\lim (I, f)$ is pseudo-arc is nowhere dense in $C(I)$.

Thm (Bobok, Troubetzkoy, 2020): Typical map from

$$
C_{\lambda}(I):=\left\{f \in C(I) ; \lambda\left(f^{-1}(A)\right)=\lambda(A) \text { for all } A \in \mathcal{B}\right\}
$$

is locally eventually onto (leo), ${ }^{1}$ and weakly mixing wrt $\lambda .{ }^{2}$
Question 1: Does there exist an interval map $f \in C_{\lambda}(I)$ so that $\lim (I, f)$ is the pseudo-arc?

Thm (Č., Oprocha, 2021) For a typical map $f \in C_{\lambda}(I), \lim (I, f)$ is the pseudo-arc.
${ }^{1} f: I \rightarrow I$ is leo: \forall open interval $J \subset I$ there exists $n \geq 0$ so that $f^{n}(J)=I$.
${ }^{2}$ if for every $A, B \in \mathcal{B}, \lim _{n \rightarrow \infty} \sum_{j=0}^{n-1}\left|\lambda\left(f^{-j}(A) \cap B\right)-\lambda(A) \lambda(B)\right|=0$.

Introduction

Say X a compact connected metric space (continuum) and $f: X \rightarrow X$ a map. Inverse limit space

$$
\left.\hat{\imath}:=\lim (X, f)=\left\{\left(x_{0}, x_{1}, x_{2}, \ldots\right) \in X^{\infty} ; f\left(x_{i+1}\right)=x_{i}\right)\right\} .
$$

The shift homeomorphism (natural extension of f):

$$
\hat{f}\left(\left(x_{0}, x_{1}, x_{2}, \ldots\right)\right)=\left(f\left(x_{0}\right), x_{0}, x_{1}, \ldots\right)
$$

E.g.: $T_{s}(x)=\min _{x \in J:=\left[T_{s}^{2}\left(\frac{1}{2}\right), T_{s}\left(\frac{1}{2}\right)\right]}\{s x, s(1-x)\}, K_{s}=\lim _{\longleftrightarrow}\left(J, T_{s}\right)$.

Intro to Lebesgue preserving interval maps

Def: By λ we denote the Lebesgue measure on I and \mathcal{B} Borel sets in $I . C_{\lambda}(I)$ denotes the space of all λ-preserving continuous interval maps; we use $\rho(f, g):=\sup _{x \in[0,1]}|f(x)-g(x)|$.

Prop: $\left(C_{\lambda}(I), \rho\right)$ is a complete metric space.
Example: $T_{2} \in C_{\lambda}(I)$ but $T_{s} \notin C_{\lambda}(I)$ for all $s \in(1,2)$.
Prop: Let f be piecewise affine with nonzero slopes and such that its derivative does not exist at a finite set E. Then $f \in C_{\lambda}(I)$ iff

$$
\begin{equation*}
\forall y \in[0,1) \backslash f(E): \quad \sum_{x \in f^{-1}(y)} \frac{1}{\left|f^{\prime}(x)\right|}=1 \tag{1}
\end{equation*}
$$

Crookedness and pseudo-arc

Def: Let $f: I \rightarrow I$, let $a<b \in I$ and let $\delta>0$. We say that f is δ-crooked between a and b if, for every two points $c, d \in I$ such that $f(c)=a$ and $f(d)=b$, there are points $c<c^{\prime} \leq d^{\prime}<d$ such that $\left|b-f\left(c^{\prime}\right)\right| \leq \delta$ and $\left|a-f\left(d^{\prime}\right)\right| \leq \delta$. We will say that f is δ-crooked if it is δ-crooked between every pair of points.

Crookedness and pseudo-arc

Def: Let $f: I \rightarrow I$, let $a<b \in I$ and let $\delta>0$. We say that f is δ-crooked between a and b if, for every two points $c, d \in I$ such that $f(c)=a$ and $f(d)=b$, there are points $c<c^{\prime} \leq d^{\prime}<d$ such that $\left|b-f\left(c^{\prime}\right)\right| \leq \delta$ and $\left|a-f\left(d^{\prime}\right)\right| \leq \delta$. We will say that f is δ-crooked if it is δ-crooked between every pair of points.

Figure: Map f is $1 / 3$-crooked.

Crookedness and pseudo-arc

Def: Let $f: I \rightarrow I$, let $a<b \in I$ and let $\delta>0$. We say that f is δ-crooked between a and b if, for every two points $c, d \in I$ such that $f(c)=a$ and $f(d)=b$, there are points $c<c^{\prime} \leq d^{\prime}<d$ such that $\left|b-f\left(c^{\prime}\right)\right| \leq \delta$ and $\left|a-f\left(d^{\prime}\right)\right| \leq \delta$. We will say that f is δ-crooked if it is δ-crooked between every pair of points.

Figure: Map f is $1 / 3$-crooked.

Crookedness and pseudo-arc

Def: Let $f: I \rightarrow I$, let $a<b \in I$ and let $\delta>0$. We say that f is δ-crooked between a and b if, for every two points $c, d \in I$ such that $f(c)=a$ and $f(d)=b$, there are points $c<c^{\prime} \leq d^{\prime}<d$ such that $\left|b-f\left(c^{\prime}\right)\right| \leq \delta$ and $\left|a-f\left(d^{\prime}\right)\right| \leq \delta$. We will say that f is δ-crooked if it is δ-crooked between every pair of points.

Figure: Map f is $1 / 3$-crooked.

Crookedness and pseudo-arc

Def: Let $f: I \rightarrow I$, let $a<b \in I$ and let $\delta>0$. We say that f is δ-crooked between a and b if, for every two points $c, d \in I$ such that $f(c)=a$ and $f(d)=b$, there are points $c<c^{\prime} \leq d^{\prime}<d$ such that $\left|b-f\left(c^{\prime}\right)\right| \leq \delta$ and $\left|a-f\left(d^{\prime}\right)\right| \leq \delta$. We will say that f is δ-crooked if it is δ-crooked between every pair of points.

Figure: Map f is $1 / 3$-crooked.

Crookedness and pseudo-arc

Def: Let $f: I \rightarrow I$, let $a<b \in I$ and let $\delta>0$. We say that f is δ-crooked between a and b if, for every two points $c, d \in I$ such that $f(c)=a$ and $f(d)=b$, there are points $c<c^{\prime} \leq d^{\prime}<d$ such that $\left|b-f\left(c^{\prime}\right)\right| \leq \delta$ and $\left|a-f\left(d^{\prime}\right)\right| \leq \delta$. We will say that f is δ-crooked if it is δ-crooked between every pair of points.

Figure: Map f is $1 / 3$-crooked.

Crookedness and pseudo-arc

Def: Set $I:=[0,1]$. Let $f: I \rightarrow I$, let $a<b \in I$ and let $\delta>0$. We say that f is δ-crooked between a and b if, for every two points $c, d \in I$ such that $f(c)=a$ and $f(d)=b$, there are points $c<c^{\prime} \leq d^{\prime}<d$ such that $\left|b-f\left(c^{\prime}\right)\right| \leq \delta$ and $\left|a-f\left(d^{\prime}\right)\right| \leq \delta$. We will say that f is δ-crooked if it is δ-crooked between every pair of points.

Figure: Map f is $1 / 5$-crooked.

Crookedness and pseudo-arc

Def: Set $I:=[0,1]$. Let $f: I \rightarrow I$, let $a<b \in I$ and let $\delta>0$. We say that f is δ-crooked between a and b if, for every two points $c, d \in I$ such that $f(c)=a$ and $f(d)=b$, there are points $c<c^{\prime} \leq d^{\prime}<d$ such that $\left|b-f\left(c^{\prime}\right)\right| \leq \delta$ and $\left|a-f\left(d^{\prime}\right)\right| \leq \delta$. We will say that f is δ-crooked if it is δ-crooked between every pair of points.

Figure: Map f is $1 / 5$-crooked.

Crookedness and pseudo-arc

Def: Set $I:=[0,1]$. Let $f: I \rightarrow I$, let $a<b \in I$ and let $\delta>0$. We say that f is δ-crooked between a and b if, for every two points $c, d \in I$ such that $f(c)=a$ and $f(d)=b$, there are points $c<c^{\prime} \leq d^{\prime}<d$ such that $\left|b-f\left(c^{\prime}\right)\right| \leq \delta$ and $\left|a-f\left(d^{\prime}\right)\right| \leq \delta$. We will say that f is δ-crooked if it is δ-crooked between every pair of points.

Figure: Map f is $1 / 5$-crooked.

Crookedness and pseudo-arc

Def: Set $I:=[0,1]$. Let $f: I \rightarrow I$, let $a<b \in I$ and let $\delta>0$. We say that f is δ-crooked between a and b if, for every two points $c, d \in I$ such that $f(c)=a$ and $f(d)=b$, there are points $c<c^{\prime} \leq d^{\prime}<d$ such that $\left|b-f\left(c^{\prime}\right)\right| \leq \delta$ and $\left|a-f\left(d^{\prime}\right)\right| \leq \delta$. We will say that f is δ-crooked if it is δ-crooked between every pair of points.

Figure: Map f is $1 / 5$-crooked.

Crookedness and pseudo-arc

Def: Set $I:=[0,1]$. Let $f: I \rightarrow I$, let $a<b \in I$ and let $\delta>0$. We say that f is δ-crooked between a and b if, for every two points $c, d \in I$ such that $f(c)=a$ and $f(d)=b$, there are points $c<c^{\prime} \leq d^{\prime}<d$ such that $\left|b-f\left(c^{\prime}\right)\right| \leq \delta$ and $\left|a-f\left(d^{\prime}\right)\right| \leq \delta$. We will say that f is δ-crooked if it is δ-crooked between every pair of points.

Figure: Map f is $1 / 5$-crooked.

Crookedness and the pseudo-arc

Def: Let $I:=[0,1]$. Let $f: I \rightarrow I$, let $a, b \in I$ and let $\delta>0$. We say that f is δ-crooked between a and b if, for every two points $c, d \in I$ such that $f(c)=a$ and $f(d)=b$, there are points $c<c^{\prime} \leq d^{\prime}<d$ such that $\left|b-f\left(c^{\prime}\right)\right| \leq \delta$ and $\left|a-f\left(d^{\prime}\right)\right| \leq \delta$. We will say that f is δ-crooked if it is δ-crooked between every pair of points.

Figure: Map f is $1 / 5$-crooked.

Crookedness and the pseudo-arc

Def: Let $I:=[0,1]$. Let $f: I \rightarrow I$, let $a, b \in I$ and let $\delta>0$. We say that f is δ-crooked between a and b if, for every two points $c, d \in I$ such that $f(c)=a$ and $f(d)=b$, there are points $c<c^{\prime} \leq d^{\prime}<d$ such that $\left|b-f\left(c^{\prime}\right)\right| \leq \delta$ and $\left|a-f\left(d^{\prime}\right)\right| \leq \delta$. We will say that f is δ-crooked if it is δ-crooked between every pair of points.

Figure: Map f is $1 / 5$-crooked.
Lem (Bing 1950's \& Minc, Transue, 1991): Nondegenerate continuum \hat{l} is pseudoarc $\Longleftrightarrow f: I \rightarrow I$ is such that for every $\delta>0$ there is $n \geq 0$ such that f^{n} is δ-crooked.

Pseudo-arc

Henderson's interval map (approx.) with 0 topological entropy, such that \hat{l} is a pseudo-arc

Approx. of an interval map with positive topological entropy, such that \hat{l} is a pseudo-arc (Minc\& Transue)

Computer simulation of an approx. of pseudo-arc (courtesy of Jan Boroński)

Strategy of proof that δ-crookedness of f^{n} is typical in $C_{\lambda}(I)$

- Take any piecewise linear leo map $g \in C_{\lambda}(I)$ (Bobok, Troubetzkoy 2020 prove they are dense in $C_{\lambda}(I)$),
- For every $\varepsilon>0$ there exists $G \in C_{\lambda}(I)$ such that G is admissible ${ }^{3}$ and $|G(t)-g(t)|<\varepsilon$ for every $t \in I$,
- Perturb G with an arbitrary small perturbation $\lambda_{n, k} \in C_{\lambda}(I)$, i.e. $\tilde{G}=G \circ \lambda_{n, k} \in C_{\lambda}(I)$,
- Fix $\eta, \delta \in \mathbb{R}^{+}$for \tilde{G}. There \exists an admissible map $F \in C_{\lambda}(I)$ and $n \in \mathbb{N}$ s.t. F^{n} is δ-crooked and $|\tilde{G}(t)-F(t)|<\eta$ for every $t \in I$ (Minc, Transue 1990),
- Let $F, f \in C_{\lambda}(I)$ be two maps so that $\rho(F, f)<\varepsilon$. If F is δ-crooked, then f is ($\delta+2 \varepsilon$)-crooked (Minc, Transue 1990).

[^0]
Assumptions $\lambda_{n, k}$ needs to fulfill

Perturbations $\lambda_{n, k}$ need to satisfy the following. Set $\varepsilon:=\frac{n-1}{n+k-1}$ and $\gamma:=\frac{1}{n+k-1}$. Then the following statements hold for every odd integer $n \geq 7$ and $k \geq 1$:
(i) $\lambda_{n, k} \in C_{\lambda}(I)$ has constant slope.
(ii) $\left|t-\lambda_{n, k}(t)\right|<\varepsilon / 2+\gamma$ for each $t \in I$,
(iii) for every a and b such that $|a-b|<\varepsilon, \lambda_{n, k}$ is γ-crooked between a and b,
(iv) for each subinterval A of I we have $\operatorname{diam}\left(\lambda_{n, k}(A)\right) \geq \operatorname{diam}(A)$, and if, additionally, $\operatorname{diam}(A)>\gamma$, then
(v) $\operatorname{diam}\left(\lambda_{n, k}(A)\right)>\varepsilon / 2$,
(vi) $A \subset \lambda_{n, k}(A)$ and
(vii) $\lambda_{n, k}(B) \subset B\left(\lambda_{n, k}(A), r+\gamma\right)$ for each real number r and each set $B \subset B(A, r)$.

Simple n-crooked maps (Lewis\&Minc, 2010)

Simple n-crooked maps (Lewis\&Minc, 2010)

Simple n-crooked maps (Lewis\&Minc, 2010)

Simple n-crooked maps (Lewis\&Minc, 2010)

Simple n-crooked maps (Lewis\&Minc, 2010)

Simple n-crooked maps (Lewis\&Minc, 2010)

Figure: Simple n-crooked maps σ_{n} for $n=1, \ldots 7$.

Building blocks of perturbations $\hat{\lambda}_{n, k}$

Figure: Building blocks of the function $\hat{\lambda}_{n, k}$ for $n=7$.

Perturbations $\hat{\lambda}_{n, k}$ and $\lambda_{n, k}$ (with a flip)

Inverse limits and natural extensions revisited

Thm (Č., Oprocha, 2021) For a typical map $f \in C_{\lambda}(I)$, space \hat{l} is the pseudo-arc.

Inverse limits and natural extensions revisited

Thm (Č., Oprocha, 2021) For a typical map $f \in C_{\lambda}(I)$, space \hat{l} is the pseudo-arc.
Natural projection $\pi_{0}: \hat{I} \rightarrow I$ defined by $\pi_{0}(x)=x_{0}$ semi-conjugates \hat{f} to f.

$$
\begin{aligned}
\hat{\imath} \\
\pi_{0} \mid \xrightarrow{\hat{f}} \hat{l} \\
\stackrel{f}{f} \downarrow \\
l
\end{aligned}
$$

Say that $g: Y \rightarrow Y$ is an invertible dynamical system and $p: Y \rightarrow I$ factors g to f, then p factors through π_{0} : i.e. \hat{f} is the simplest invertible system which extends f.

The second result

Question 2: Without involving measures, can we find a natural space of interval maps for which the typical inverse limit is pseudo-arc?

The second result

Question 2: Without involving measures, can we find a natural space of interval maps for which the typical inverse limit is pseudo-arc?

Def: Denote by $C_{D P}(I) \subset C(I)$ the class of interval maps with the dense set of periodic points. The space $\left(\overline{C_{D P}(I)}, \rho\right)$ is closed in $(C(I), \rho)$ and thus it is a complete space as well.

Obs: Let f be an interval map. The following conditions are equivalent.
(i) f has a dense set of periodic points, i.e., $\overline{\operatorname{Per}(f)}=I$.
(ii) f preserves a nonatomic probability measure μ with $\operatorname{supp} \mu=I$.
(iii) There exists a homeomorphism h of I such that $h \circ f \circ h^{-1} \in C_{\lambda}(I)$.

Thm (Č., Oprocha, 2021) For a typical map $f \in \overline{C_{D P}(I)}$, space \hat{l} is the pseudo-arc.

The third result

There is a prescribed way to make \hat{l} attractor of some o.p. plane homeomorphism using the Brown-Barge-Martin embeddings.
Question 3: Are these planar embeddings of the pseudo-arc maybe all dynamically the same?

The third result

There is a prescribed way to make \hat{l} attractor of some o.p. plane homeomorphism using the Brown-Barge-Martin embeddings.
Question 3: Are these planar embeddings of the pseudo-arc maybe all dynamically the same?
Thm (Č, Oprocha, 2021): There is a parameterised family of homeomorphisms $\left\{\phi_{t}\right\}_{t \in I} \subset \mathcal{H}(D, D)$ with $I \subset \mathcal{T} \subset C_{\lambda}(I)$ where \mathcal{T} is a dense G_{δ} set from above such that:
(a) For each $t \in I$ there is a Φ_{t}-invariant set $\Lambda_{t} \subset D$ homeomorphic to the pseudo-arc so that:
(i) $\left.\Phi_{t}\right|_{\Lambda_{t}}: \Lambda_{t} \rightarrow \Lambda_{t}$ is topologically conjugate to $\hat{f}_{t}: \hat{l}_{t} \rightarrow \hat{l}_{t}$.
(ii) If $x \in D \backslash \partial D$, then the omega limit set $\omega\left(x, \Phi_{t}\right) \subset \Lambda_{t}$.
(b) The attracting sets $\left\{\Lambda_{t}\right\}_{t \in I}$ vary continuously in Hausdorff metric.
(c) Prime ends rotation numbers of homeomorphisms $\left\{\Phi_{t}\right\}_{t \in I}$ vary continuously in the interval $[0,1 / 2]$.
(d) There are countably many dynamically different embeddings of pseudo-arc in the family $\left\{\Lambda_{t}\right\}_{t \in I}$.

The fourth result: measure-theoretical BBMs

Thm(Č., Oprocha, 2021): There is a typical set $\widetilde{\mathcal{T}} \subset C_{\lambda}(I)$ and a parameterized family of o. p. homeomorphisms $\left\{\Phi_{f}\right\}_{f \in \tilde{\mathcal{T}}} \subset \mathcal{H}(D, D)$ so that:
(a) for each $f \in \widetilde{\mathcal{T}}$ there is a compact Φ_{f}-invariant set $P_{f} \subset D$ homeomorphic to the pseudo-arc so that:
(i) $\left.\Phi_{f}\right|_{P_{f}}$ is topologically conjugate to $\hat{f}: \hat{l}_{f} \rightarrow \hat{l}_{f}$.
(ii) If $x \in D \backslash \partial D$, then the omega limit set $\omega\left(x, \Phi_{f}\right) \subset P_{f}$.
(b) the attractors $\left\{P_{f}\right\}_{f \in \widetilde{\mathcal{T}}}$ vary continuously with $f \in \widetilde{\mathcal{T}}$ in the Hausdorff metric.
(c) for each $f \in \widetilde{\mathcal{T}}$ the attractors P_{f} preserve induced measure μ_{f} invariant for Φ_{f} for any $f \in \widetilde{\mathcal{T}}$. Let λ_{f} be an induced Oxtoby-Ulam measure on D. There exists an open set $U \subset D$ which for each f contains $U_{f} \subset U$ so that $\lambda_{f}\left(U_{f}\right)=\lambda(U)$ and U_{f} is in the basin of attraction of μ_{f}. In particular each μ_{f} is physical measure.
(d) there exist a dense countable set of maps $g \in \widetilde{\mathcal{T}}$ for which μ_{g} is the unique physical measure, i.e. its basin of attraction has the full λ_{g}-measure in D.
(e) $\left.\Phi_{f}\right|_{P_{f}}$ are topologically mixing, have the shadowing property and are weakly mixing wrt μ_{f}.
(f) measures μ_{f} vary continuously in the weak* topology.

Thank you!

A family $\left\{f_{t}\right\}_{t \in I} \subset \mathcal{T}$

For any $t \in I$ let f_{t} be defined $f_{t}\left(\frac{2}{7}\right)=f_{t}\left(\frac{4}{7}\right)=f_{t}\left(\frac{17}{21}\right)=f_{t}(1)=0$ and $f_{t}\left(\frac{3}{7}\right)=f_{t}\left(\frac{5}{7}\right)=f_{t}\left(\frac{19}{21}\right)=1$ and piecewise linear between these points on the interval $\left[\frac{2}{7}, 1\right]$. Furthermore on interval $x \in\left[0, \frac{2}{7}\right]$ let:

$$
\left(7\left(x-t \frac{4}{21}\right) ; \quad x \in(1-t)\left[0, \frac{1}{7}\right]+t \frac{4}{21}\right.
$$

$$
\int 1-7\left(x-\frac{1}{7}(1-t)-t \frac{4}{21}\right) ; \quad x \in(1-t)\left[\frac{1}{7}, \frac{2}{7}\right]+t \frac{4}{21},
$$

$$
f_{t}(x)=\left\{\frac{21}{2}\left(x-t \frac{2}{21}\right) ; \quad x \in t\left[\frac{2}{21}, \frac{4}{21}\right]\right.
$$

$$
1-\frac{21}{2} x ; \quad x \in t\left[0, \frac{2}{21}\right]
$$

$$
\left(1-\frac{21}{2}\left(x-t\left(\frac{2}{7}-t \frac{2}{21}\right)\right) ; \quad x \in t\left[\frac{2}{7}-t \frac{2}{21}, \frac{2}{7}\right] .\right.
$$

Block, Keesling, Uspenskij argument

Thm (Block, Keesling, Uspenskij, 1999): Set of maps $f \in C(I)$ for which $\lim _{\leftrightarrows}(I, f)$ is pseudo-arc is nowhere dense in $C(I)$.

[^0]: ${ }^{3} G$ is admissible if it is leo and $\left|G^{\prime}(x)\right|>4$ for all $x \in I$ where it is defined

