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Motivation and the first result

Thm (Bing, 1951): For any manifold M of dimension at least 2,
the set of subcontinua homeomorphic to the pseudo-arc is a dense
G5 subset of the set of all subcontinua of M.

Thm (Block, Keesling, Uspenskij, 1999): Set of maps f € C(/) for
which Iiﬁ(l, f) is pseudo-arc is nowhere dense in C(/).

Thm (Bobok, Troubetzkoy, 2020): Typical map from
(1) :={f € CU); MFY(A)) = \(A) for all A€ B}

is locally eventually onto (leo),! and weakly mixing wrt \.2

‘Question 1: Does there exist an interval map f € Cy(/) so that
lim(/, f) is the pseudo-arc?

Thm (C., Oprocha, 2021) For a typical map f € Cy\(/), lim(/, f) is.
‘the pseudo-arc.

f 11 — I is leo: V open interval J C / there exists n > 0 so that f"(J) = I,
2if for every A, B € B, limy— o0 Z;:ol IA(F(A) N B) — MA)A(B)| =0.




Introduction

Say X a compact connected metric space (continuum) and
f: X — X a map. Inverse limit space

[i=1im(X, £) = {(x0,x1, %0, .) € X, f(xi31) = xi)}.
The shift homeomorphism (natural extension of f):
F((x0, x1, X2, -..)) = (F(x0), X0, X1, - - .)-

Eg.: Ts(x) = er::[T?(ig),Ts(%)]{SX’ s(1—x)} Ks = Ii<_m(J, Ts).
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Intro to Lebesgue preserving interval maps

Def: By A\ we denote the Lebesgue measure on | and B Borel sets
in . C\(I) denotes the space of all A-preserving continuous interval

maps; we use p(. £) = sup,cioy |F(x) — 8()]
Prop: (Ca(1), p) is a complete metric space.
Example: T € Cy(/) but Ts ¢ Cy(/) for all s € (1,2).

Prop: Let f be piecewise affine with nonzero slopes and such that
its derivative does not exist at a finite set E. Then f € Cy(/) iff

YyeOD\FE): Y =1 (1)



Crookedness and pseudo-arc

Def: Let f: 1 — [/, leta< belandlet § >0. We say that f is
0-crooked between a and b if, for every two points ¢, d € | such
that f(c) = a and f(d) = b, there are points ¢ < ¢’ < d’ < d such
that |[b— f(c’)| <6 and |a— f(d’)] < §. We will say that f is
0-crooked if it is d-crooked between every pair of points.
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Crookedness and pseudo-arc
Def: Set / :=[0,1]. Let f: | — [, leta< be | and let 6 > 0. We
say that f is d-crooked between a and b if, for every two points
c,d € I such that f(c) = a and f(d) = b, there are points
c<c <d <dsuchthat |b—f(c')| <dand|a—f(d) <. We
will say that f is d-crooked if it is d-crooked between every pair of

points.
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Crookedness and the pseudo-arc
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Lem (Bing 1950's & Minc, Transue, 1991): Nondegenerate contin-|

~

uum [ is pseudoarc <= f: | — | is such that for every 6 > 0
there is n > 0 such that " is §-crooked.




Pseudo-arc
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Strategy of proof that d-crookedness of f” is typical in Cy(/)

» Take any piecewise linear leo map g € Cy(/)
(Bobok, Troubetzkoy 2020 prove they are dense in Cy(/)),

» For every ¢ > 0 there exists G € Cy(/) such that G is
admissible® and |G(t) — g(t)| < ¢ for every t € I,

> /PertuNrb G with an arbitrary small perturbation A, € C\(/),
‘ki.e. G=Go )\n,k S C,\(/),

> Fix 1,0 € R for G. There 3 an admissible map F € C,(/)
and n € Ns.t. F" is d-crooked and |G(t) — F(t)| < n for
every t € | (Minc, Transue 1990),

» Let F,f € Cy\(/) be two maps so that p(F,f) <e. If Fis
d-crooked, then f is (§ + 2¢)-crooked (Minc, Transue 1990).

3G is admissible if it is leo and |G’(x)| > 4 for all x-€ | where it is defined:



Assumptions A, x needs to fulfill

n—1
n+k—1
and v := ﬁ Then the following statements hold for every odd

integer n > 7 and k > 1:
(i) Ank € Ca(!) has constant slope.

Perturbations A\, x need to satisfy the following. Set € :=

(i) |t = Ank(t)] <e/2+4~ foreach t €/,

(iii) for every a and b such that |a — b| < &, A,k is y-crooked
between a and b,

(iv) for each subinterval A of | we have diam(\, x(A)) > diam(A),
and if, additionally, diam(A) > =, then

(v) diam(Ank(A)) > ¢/2,

(vi) AC Apk(A) and

(vii) Apk(B) C B(Ank(A), r + ) for each real number r and each
set B C B(A,r).



Simple n-crooked maps (Lewis&Minc, 2010)
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Simple n-crooked maps (Lewis&Minc, 2010)
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Simple n-crooked maps (Lewis&Minc, 2010)
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Figure: Simple n-crooked maps o, for n=1,..



Building blocks of perturbations S\n’k
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Figure: Building blocks of the function j\n,k forn=7.



Perturbations A, and A, (with a flip)
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Inverse limits and natural extensions revisited

Thm (C., Oprocha, 2021) For a typical map f € Cy(/), space I is|
the pseudo-arc.
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Inverse limits and natural extensions revisited

Thm (C., Oprocha, 2021) For a typical map f € Cy(/), space Iis
the pseudo-arc.

Natural projection mq : [ — I defined by mo(x) = xo
semi-conjugates f to f.

.~ F
| —1
Wol lﬂ'o
f

| — 1
Say that g : Y — Y is an invertible dynamical system and
p: Y — | factors g to f, then p factors through mg: i.e. f is the
simplest invertible system which extends f.




The second result

‘Question 2: Without involving measures, can we find a natural space|
of interval maps for which the typical inverse limit is pseudo-arc?



The second result

‘Question 2: Without involving measures, can we find a natural space|
of interval maps for which the typical inverse limit is pseudo-arc?

Def: Denote by Cpp(/) C C(I) the class of interval maps with the
dense set of periodic points. The space (Cpp(/), p) is closed in
(C(1), p) and thus it is a complete space as well.

Obs: Let f be an interval map. The following conditions are
equivalent.

(i) f has a dense set of periodic points, i.e., Per(f) = /.
(ii) f preserves a nonatomic probability measure p with
supp p=1.

(iii) There exists a homeomorphism h of | such that
hofoh™te C(I).

Thm (C., Oprocha, 2021) For a typical map f € Cpp(1), space Iis
the pseudo-arc.




The third result

There is a prescribed way to make I attractor of some o.p. plane
homeomorphism using the Brown-Barge-Martin embeddings.
‘Question 3: Are these planar embeddings of the pseudo-arc maybe
all dynamically the same?
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Thm (C, Oprocha, 2021): There is a parameterised family of
homeomorphisms {®:}c) C H(D, D) with | C T C Cy\(/) where
T is a dense Gs set from above such that:
(a) For each t € I there is a ®;-invariant set A; C D homeomorphic to
the pseudo-arc so that:
(i) ®¢|a, : At = A is topologically conjugate to foidy — Iy
(ii) If x € D\ 9D, then the omega limit set w(x, ®¢) C A,.

(b) The attracting sets {A;}+cs vary continuously in Hausdorff metric.

(c) Prime ends rotation numbers of homeomorphisms {®;} ;¢ vary
continuously in the interval [0,1/2].

(d) There are countably many dynamically different embeddings of
pseudo-arc in the family {A;} e/




The fourth result: measure-theoretical BBMs

Thm(C., Oprocha, 2021): There is a typical set 7 C Cx(/) and a param-
eterized family of o. p. homeomorphisms {®¢}, = C H(D, D) so that:
(a) for each f € T there is a compact ®¢-invariant set P C D homeomorphic to the pseudo-arc so
that:
(i) d>;\pf is topologically conjugate to f : Iy — If.
(ii) If x € D\ 9D, then the omega limit set w(x, ®f) C Ps.

(b) the attractors {Pr} .+ vary continuously with f € T in the Hausdorff metric.

(c) for each f € T the attractors Py preserve induced measure i
invariant for ®¢ for any f € 7. Let A¢ be an induced Oxtoby-Ulam
measure on D. There exists an open set U C D which for each f
contains Ur C U so that A\r(Ur) = A(U) and Ur is in the basin of
attraction of . In particular each pr is physical measure.

(d) there exist a dense countable set of maps g € T for which g iS
the unique physical measure, i.e. its basin of attraction has the full
Ag-measure in D.

(e) ®¢|p, are topologically mixing, have the shadowing property and
are weakly mixing wrt pf.

~ (f) measures jur vary continuously in the weak* topology.



Thank youl!



| let:
21
4
21

4

2
7

|+t
|+t
].

f(1) =0

H):
1

7

12
77
2 2
210 7

21

fe(

x € (1—1t)[o,
xe(1—1)
X e t[%v%]a
x € t[0, &],
x€et[Z—t

(7)

=1 and piecewise linear between these

f;
);

)
A
21

2
7

(
1]. Furthermore on interval x € [0,

(1—-t)—t

g
7
)i
1
7
).

1
= fi(57)
4
21
2
21
X3

2)
(x—t
21
2

7

fi(
T(x—t
1-7(x—
21

1—

2

(%)

fr(x) =

d=—=— = — — - — — Z i~

For any t € | let f; be defined f;

points on the interval |

A family {f;}ie) C T
and f;



Block, Keesling, Uspenskij argument

Thm (Block, Keesling, Uspenskij, 1999): Set of maps f € C(/) for
which lim(/, ) is pseudo-arc is nowhere dense in C(/).




