Pseudo-arc as attractor in the disk: topological and measure-theoretical aspects

Jernej Činč

University of Vienna and IT4Innovations Ostrava

14.06.2021, Visegrad 2021

Joint work with Piotr Oprocha (AGH Krakow)

Motivation and the first result

Thm (Bing, 1951): For any manifold M of dimension at least 2, the set of subcontinua homeomorphic to the pseudo-arc is a dense G_{δ} subset of the set of all subcontinua of M.

Thm (Block, Keesling, Uspenskij, 1999): Set of maps $f \in C(I)$ for which $\lim_{I \to I} (I, f)$ is pseudo-arc is nowhere dense in C(I).

Thm (Bobok, Troubetzkoy, 2020): Typical map from

$$C_{\lambda}(I) := \{ f \in C(I); \lambda(f^{-1}(A)) = \lambda(A) \text{ for all } A \in \mathcal{B} \}$$

is locally eventually onto (leo),¹ and weakly mixing wrt λ .²

Question 1: Does there exist an interval map $f \in C_{\lambda}(I)$ so that $\lim_{l \to \infty} (I, f)$ is the pseudo-arc?

Thm (Č., Oprocha, 2021) For a typical map $f \in C_{\lambda}(I)$, $\varprojlim(I, f)$ is the pseudo-arc.

¹ $f: I \to I$ is leo: \forall open interval $J \subset I$ there exists $n \ge 0$ so that $f^n(J) = I$. ²if for every $A, B \in \mathcal{B}$, $\lim_{n \to \infty} \sum_{j=0}^{n-1} |\lambda(f^{-j}(A) \cap B) - \lambda(A)\lambda(B)| = 0$.

Introduction

Say X a compact connected metric space (continuum) and $f: X \to X$ a map. Inverse limit space $\hat{l} := \underline{\lim}(X, f) = \{(x_0, x_1, x_2, \ldots) \in X^{\infty}; f(x_{i+1}) = x_i)\}.$

The shift homeomorphism (natural extension of f):

$$\hat{f}((x_0, x_1, x_2, \ldots)) = (f(x_0), x_0, x_1, \ldots)$$

E.g.:
$$T_s(x) = \min_{x \in J := [T_s^2(\frac{1}{2}), T_s(\frac{1}{2})]} \{ sx, s(1-x) \}, K_s = \varprojlim(J, T_s).$$

Intro to Lebesgue preserving interval maps

Def: By λ we denote the Lebesgue measure on I and \mathcal{B} Borel sets in I. $C_{\lambda}(I)$ denotes the space of all λ -preserving continuous interval maps; we use $\rho(f,g) := \sup_{x \in [0,1]} |f(x) - g(x)|$.

Prop: $(C_{\lambda}(I), \rho)$ is a complete metric space.

Example: $T_2 \in C_{\lambda}(I)$ but $T_s \notin C_{\lambda}(I)$ for all $s \in (1,2)$.

Prop: Let f be piecewise affine with nonzero slopes and such that its derivative does not exist at a finite set E. Then $f \in C_{\lambda}(I)$ iff

$$\forall \ y \in [0,1) \setminus f(E): \ \sum_{x \in f^{-1}(y)} \frac{1}{|f'(x)|} = 1.$$
 (1)

A D > 4 目 > 4 目 > 4 目 > 5 4 回 > 3 Q Q

Def: Let $f : I \to I$, let $a < b \in I$ and let $\delta > 0$. We say that f is δ -crooked between a and b if, for every two points $c, d \in I$ such that f(c) = a and f(d) = b, there are points $c < c' \le d' < d$ such that $|b - f(c')| \le \delta$ and $|a - f(d')| \le \delta$. We will say that f is δ -crooked if it is δ -crooked between every pair of points.

Def: Let $f: I \to I$, let $a < b \in I$ and let $\delta > 0$. We say that f is δ -crooked between a and b if, for every two points $c, d \in I$ such that f(c) = a and f(d) = b, there are points $c < c' \le d' < d$ such that $|b - f(c')| \le \delta$ and $|a - f(d')| \le \delta$. We will say that f is δ -crooked if it is δ -crooked between every pair of points.

Figure: Map f is 1/3-crooked.

- 日本 本語 本 本 田 本 本 田 本

Def: Let $f: I \to I$, let $a < b \in I$ and let $\delta > 0$. We say that f is δ -crooked between a and b if, for every two points $c, d \in I$ such that f(c) = a and f(d) = b, there are points $c < c' \le d' < d$ such that $|b - f(c')| \le \delta$ and $|a - f(d')| \le \delta$. We will say that f is δ -crooked if it is δ -crooked between every pair of points.

Figure: Map f is 1/3-crooked.

・ロト ・ 一日 ・ ・ 日 ・ ・ 日 ・ ・ 日 ・

Def: Let $f: I \to I$, let $a < b \in I$ and let $\delta > 0$. We say that f is δ -crooked between a and b if, for every two points $c, d \in I$ such that f(c) = a and f(d) = b, there are points $c < c' \le d' < d$ such that $|b - f(c')| \le \delta$ and $|a - f(d')| \le \delta$. We will say that f is δ -crooked if it is δ -crooked between every pair of points.

Figure: Map f is 1/3-crooked.

・ロト ・ 一日 ・ ・ 日 ・ ・ 日 ・ ・ 日 ・

Def: Let $f: I \to I$, let $a < b \in I$ and let $\delta > 0$. We say that f is δ -crooked between a and b if, for every two points $c, d \in I$ such that f(c) = a and f(d) = b, there are points $c < c' \le d' < d$ such that $|b - f(c')| \le \delta$ and $|a - f(d')| \le \delta$. We will say that f is δ -crooked if it is δ -crooked between every pair of points.

Figure: Map f is 1/3-crooked.

Def: Let $f: I \to I$, let $a < b \in I$ and let $\delta > 0$. We say that f is δ -crooked between a and b if, for every two points $c, d \in I$ such that f(c) = a and f(d) = b, there are points $c < c' \le d' < d$ such that $|b - f(c')| \le \delta$ and $|a - f(d')| \le \delta$. We will say that f is δ -crooked if it is δ -crooked between every pair of points.

Figure: Map f is 1/3-crooked.

Def: Set I := [0, 1]. Let $f : I \to I$, let $a < b \in I$ and let $\delta > 0$. We say that f is δ -crooked between a and b if, for every two points $c, d \in I$ such that f(c) = a and f(d) = b, there are points $c < c' \le d' < d$ such that $|b - f(c')| \le \delta$ and $|a - f(d')| \le \delta$. We will say that f is δ -crooked if it is δ -crooked between every pair of points.

Figure: Map f is 1/5-crooked.

Def: Set I := [0, 1]. Let $f : I \to I$, let $a < b \in I$ and let $\delta > 0$. We say that f is δ -crooked between a and b if, for every two points $c, d \in I$ such that f(c) = a and f(d) = b, there are points $c < c' \le d' < d$ such that $|b - f(c')| \le \delta$ and $|a - f(d')| \le \delta$. We will say that f is δ -crooked if it is δ -crooked between every pair of points.

Figure: Map f is 1/5-crooked.

Def: Set I := [0, 1]. Let $f : I \to I$, let $a < b \in I$ and let $\delta > 0$. We say that f is δ -crooked between a and b if, for every two points $c, d \in I$ such that f(c) = a and f(d) = b, there are points $c < c' \le d' < d$ such that $|b - f(c')| \le \delta$ and $|a - f(d')| \le \delta$. We will say that f is δ -crooked if it is δ -crooked between every pair of points.

Figure: Map f is 1/5-crooked.

Def: Set I := [0, 1]. Let $f : I \to I$, let $a < b \in I$ and let $\delta > 0$. We say that f is δ -crooked between a and b if, for every two points $c, d \in I$ such that f(c) = a and f(d) = b, there are points $c < c' \le d' < d$ such that $|b - f(c')| \le \delta$ and $|a - f(d')| \le \delta$. We will say that f is δ -crooked if it is δ -crooked between every pair of points.

Figure: Map f is 1/5-crooked.

Def: Set I := [0, 1]. Let $f : I \to I$, let $a < b \in I$ and let $\delta > 0$. We say that f is δ -crooked between a and b if, for every two points $c, d \in I$ such that f(c) = a and f(d) = b, there are points $c < c' \le d' < d$ such that $|b - f(c')| \le \delta$ and $|a - f(d')| \le \delta$. We will say that f is δ -crooked if it is δ -crooked between every pair of points.

Figure: Map f is 1/5-crooked.

Def: Let I := [0, 1]. Let $f : I \to I$, let $a, b \in I$ and let $\delta > 0$. We say that f is δ -crooked between a and b if, for every two points $c, d \in I$ such that f(c) = a and f(d) = b, there are points $c < c' \le d' < d$ such that $|b - f(c')| \le \delta$ and $|a - f(d')| \le \delta$. We will say that f is δ -crooked if it is δ -crooked between every pair of points.

Figure: Map f is 1/5-crooked.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ うらつ

Def: Let I := [0, 1]. Let $f : I \to I$, let $a, b \in I$ and let $\delta > 0$. We say that f is δ -crooked between a and b if, for every two points $c, d \in I$ such that f(c) = a and f(d) = b, there are points $c < c' \le d' < d$ such that $|b - f(c')| \le \delta$ and $|a - f(d')| \le \delta$. We will say that f is δ -crooked if it is δ -crooked between every pair of points.

Figure: Map f is 1/5-crooked.

Lem (Bing 1950's & Minc, Transue, 1991): Nondegenerate continuum \hat{I} is pseudoarc $\iff f: I \to I$ is such that for every $\delta > 0$ there is $n \ge 0$ such that f^n is δ -crooked.

Pseudo-arc

Henderson's interval map (approx.) with 0 topological entropy, such that \hat{l} is a pseudo-arc

Approx. of an interval map with positive topological entropy, such that \hat{l} is a pseudo-arc (Minc& Transue)

Computer simulation of an approx. of pseudo-arc (courtesy of Jan Boroński)

Strategy of proof that δ -crookedness of f^n is typical in $C_{\lambda}(I)$

- ► Take any piecewise linear leo map g ∈ C_λ(I) (Bobok,Troubetzkoy 2020 prove they are dense in C_λ(I)),
- For every ε > 0 there exists G ∈ C_λ(I) such that G is admissible³ and |G(t) − g(t)| < ε for every t ∈ I,</p>

Perturb G with an arbitrary small perturbation $\lambda_{n,k} \in C_{\lambda}(I)$, i.e. $\tilde{G} = G \circ \lambda_{n,k} \in C_{\lambda}(I)$,

► Fix $\eta, \delta \in \mathbb{R}^+$ for \tilde{G} . There \exists an admissible map $F \in C_{\lambda}(I)$ and $n \in \mathbb{N}$ s.t. F^n is δ -crooked and $|\tilde{G}(t) - F(t)| < \eta$ for every $t \in I$ (Minc, Transue 1990),

▶ Let $F, f \in C_{\lambda}(I)$ be two maps so that $\rho(F, f) < \varepsilon$. If F is δ -crooked, then f is $(\delta + 2\varepsilon)$ -crooked (Minc, Transue 1990).

 ${}^{3}G$ is admissible if it is leo and |G'(x)| > 4 for all $x \in I$ where it is defined.

Assumptions $\lambda_{n,k}$ needs to fulfill

Perturbations $\lambda_{n,k}$ need to satisfy the following. Set $\varepsilon := \frac{n-1}{n+k-1}$ and $\gamma := \frac{1}{n+k-1}$. Then the following statements hold for every odd integer $n \ge 7$ and $k \ge 1$:

(i)
$$\lambda_{n,k} \in C_{\lambda}(I)$$
 has constant slope.

- (ii) $|t \lambda_{n,k}(t)| < \varepsilon/2 + \gamma$ for each $t \in I$,
- (iii) for every a and b such that $|a b| < \varepsilon$, $\lambda_{n,k}$ is γ -crooked between a and b,

(iv) for each subinterval A of I we have $\operatorname{diam}(\lambda_{n,k}(A)) \ge \operatorname{diam}(A)$, and if, additionally, $\operatorname{diam}(A) > \gamma$, then

(v) diam
$$(\lambda_{n,k}(A)) > \varepsilon/2$$
,

(vi) $A \subset \lambda_{n,k}(A)$ and

(vii) $\lambda_{n,k}(B) \subset B(\lambda_{n,k}(A), r + \gamma)$ for each real number r and each set $B \subset B(A, r)$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

・ロト ・ 日 ト ・ モ ト ・ モ ト

æ

æ

イロト イ押ト イヨト イヨト

æ

▲ロト▲圖ト▲画ト▲画ト 画 のへで

Figure: Simple *n*-crooked maps σ_n for n = 1, ..., 7.

э

Building blocks of perturbations $\hat{\lambda}_{n,k}$

Figure: Building blocks of the function $\hat{\lambda}_{n,k}$ for n = 7.

▲臣▶ ▲臣▶ 臣 のへで

- ∢ 🗇 ト

Perturbations $\hat{\lambda}_{n,k}$ and $\lambda_{n,k}$ (with a flip)

239 239 239 239 239 20 | 76 | 141 18 58 85 76 58 I 58 83 | 18 83 58 18 18 I 58 i 18 2 | 18 | 58 | 83 18 ¦ 18 | 58 | 83 | 58 76 85 58 1 141 | 76 | 20 58 18 18 |

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへで

Inverse limits and natural extensions revisited

Thm (Č., Oprocha, 2021) For a typical map $f \in C_{\lambda}(I)$, space \hat{I} is the pseudo-arc.

Inverse limits and natural extensions revisited

Thm (Č., Oprocha, 2021) For a typical map $f \in C_{\lambda}(I)$, space \hat{I} is the pseudo-arc.

Natural projection $\pi_0 : \hat{I} \to I$ defined by $\pi_0(x) = x_0$ semi-conjugates \hat{f} to f. $\hat{I} \xrightarrow{\hat{f}} \hat{I}$ $\pi_0 \downarrow \qquad f \xrightarrow{\hat{f}} I$

Say that $g: Y \to Y$ is an invertible dynamical system and $p: Y \to I$ factors g to f, then p factors through π_0 : i.e. \hat{f} is the simplest invertible system which extends f.

The second result

Question 2: Without involving measures, can we find a natural space of interval maps for which the typical inverse limit is pseudo-arc?

The second result

Question 2: Without involving measures, can we find a natural space of interval maps for which the typical inverse limit is pseudo-arc?

Def: Denote by $C_{DP}(I) \subset C(I)$ the class of interval maps with the dense set of periodic points. The space $(\overline{C_{DP}(I)}, \rho)$ is closed in $(C(I), \rho)$ and thus it is a complete space as well.

Obs: Let f be an interval map. The following conditions are equivalent.

- (i) f has a dense set of periodic points, i.e., $\overline{Per(f)} = I$.
- (ii) f preserves a nonatomic probability measure μ with supp $\mu = I$.
- (iii) There exists a homeomorphism h of I such that $h \circ f \circ h^{-1} \in C_{\lambda}(I)$.

Thm (Č., Oprocha, 2021) For a typical map $f \in \overline{C_{DP}(I)}$, space \hat{I} is the pseudo-arc.

The third result

There is a prescribed way to make \hat{l} attractor of some o.p. plane homeomorphism using the Brown-Barge-Martin embeddings.

Question 3: Are these planar embeddings of the pseudo-arc maybe all dynamically the same?

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

The third result

There is a prescribed way to make \hat{l} attractor of some o.p. plane homeomorphism using the Brown-Barge-Martin embeddings.

Question 3: Are these planar embeddings of the pseudo-arc maybe all dynamically the same?

Thm (Č, Oprocha, 2021): There is a parameterised family of homeomorphisms $\{\Phi_t\}_{t\in I} \subset \mathcal{H}(D,D)$ with $I \subset \mathcal{T} \subset C_{\lambda}(I)$ where \mathcal{T} is a dense G_{δ} set from above such that:

- (a) For each $t \in I$ there is a Φ_t -invariant set $\Lambda_t \subset D$ homeomorphic to the pseudo-arc so that:
 - (i) $\Phi_t|_{\Lambda_t} : \Lambda_t \to \Lambda_t$ is topologically conjugate to $\hat{f}_t : \hat{I}_t \to \hat{I}_t$.
 - (ii) If $x \in D \setminus \partial D$, then the omega limit set $\omega(x, \Phi_t) \subset \Lambda_t$.
- (b) The attracting sets $\{\Lambda_t\}_{t \in I}$ vary continuously in Hausdorff metric.
- (c) Prime ends rotation numbers of homeomorphisms $\{\Phi_t\}_{t\in I}$ vary continuously in the interval [0, 1/2].
- (d) There are countably many dynamically different embeddings of pseudo-arc in the family $\{\Lambda_t\}_{t \in I}$.

The fourth result: measure-theoretical BBMs

Thm(Č., Oprocha, 2021): There is a typical set $\widetilde{\mathcal{T}} \subset C_{\lambda}(I)$ and a parameterized family of o. p. homeomorphisms $\{\Phi_f\}_{f \in \widetilde{\mathcal{T}}} \subset \mathcal{H}(D, D)$ so that:

- (a) for each $f \in \tilde{T}$ there is a compact Φ_f -invariant set $P_f \subset D$ homeomorphic to the pseudo-arc so that:
 - (i) $\Phi_f|_{P_f}$ is topologically conjugate to $\hat{f}: \hat{I}_f \to \hat{I}_f$.

(ii) If $x \in D \setminus \partial D$, then the omega limit set $\omega(x, \Phi_f) \subset P_f$.

- (b) the attractors $\{P_f\}_{f \in \widetilde{T}}$ vary continuously with $f \in \widetilde{T}$ in the Hausdorff metric.
- (c) for each $f \in \tilde{\mathcal{T}}$ the attractors P_f preserve induced measure μ_f invariant for Φ_f for any $f \in \tilde{\mathcal{T}}$. Let λ_f be an induced Oxtoby-Ulam measure on D. There exists an open set $U \subset D$ which for each fcontains $U_f \subset U$ so that $\lambda_f(U_f) = \lambda(U)$ and U_f is in the basin of attraction of μ_f . In particular each μ_f is physical measure.
- (d) there exist a dense countable set of maps $g \in \widetilde{\mathcal{T}}$ for which μ_g is the unique physical measure, i.e. its basin of attraction has the full λ_g -measure in D.
- (e) $\Phi_f|_{P_f}$ are topologically mixing, have the shadowing property and are weakly mixing wrt μ_f .
- (f) measures μ_f vary continuously in the weak* topology.

Thank you!

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = = の�?

A family $\{f_t\}_{t\in I} \subset \mathcal{T}$

For any $t \in I$ let f_t be defined $f_t(\frac{2}{7}) = f_t(\frac{4}{7}) = f_t(\frac{17}{21}) = f_t(1) = 0$ and $f_t(\frac{3}{7}) = f_t(\frac{5}{7}) = f_t(\frac{19}{21}) = 1$ and piecewise linear between these points on the interval $[\frac{2}{7}, 1]$. Furthermore on interval $x \in [0, \frac{2}{7}]$ let:

Block, Keesling, Uspenskij argument

Thm (Block, Keesling, Uspenskij, 1999): Set of maps $f \in C(I)$ for which $\lim_{l \to \infty} (I, f)$ is pseudo-arc is nowhere dense in C(I).

・ロト ・ 一下・ ・ ヨト ・ 日 ・ ・

э