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Motivation and the first result
Thm (Bing, 1951): For any manifold M of dimension at least 2,
the set of subcontinua homeomorphic to the pseudo-arc is a dense
Gδ subset of the set of all subcontinua of M.

Thm (Block, Keesling, Uspenskij, 1999): Set of maps f ∈ C (I ) for
which lim←−(I , f ) is pseudo-arc is nowhere dense in C (I ).

Thm (Bobok, Troubetzkoy, 2020): Typical map from

Cλ(I ) := {f ∈ C (I );λ(f −1(A)) = λ(A) for all A ∈ B}
is locally eventually onto (leo),1 and weakly mixing wrt λ.2

Question 1: Does there exist an interval map f ∈ Cλ(I ) so that
lim←−(I , f ) is the pseudo-arc?

Thm (Č., Oprocha, 2021) For a typical map f ∈ Cλ(I ), lim←−(I , f ) is
the pseudo-arc.

1f : I → I is leo: ∀ open interval J ⊂ I there exists n ≥ 0 so that f n(J) = I .
2if for every A,B ∈ B, limn→∞

∑n−1
j=0 |λ(f

−j(A) ∩ B)− λ(A)λ(B)| = 0.



Introduction
Say X a compact connected metric space (continuum) and
f : X → X a map. Inverse limit space

Î := lim←−(X , f ) = {(x0, x1, x2, . . .) ∈ X∞; f (xi+1) = xi )}.

The shift homeomorphism (natural extension of f ):

f̂ ((x0, x1, x2, . . .)) = (f (x0), x0, x1, . . .).

E.g.: Ts(x) = min
x∈J:=[T 2

s ( 12 ),Ts( 12 )]
{sx , s(1− x)},Ks = lim←−(J,Ts).

T 2
s ( 12 ) Ts( 12 )Ts( 12 )T 2

s ( 12 ) 1
2



Intro to Lebesgue preserving interval maps

Def: By λ we denote the Lebesgue measure on I and B Borel sets
in I . Cλ(I ) denotes the space of all λ-preserving continuous interval
maps; we use ρ(f , g) := supx∈[0,1] |f (x)− g(x)|.

Prop: (Cλ(I ), ρ) is a complete metric space.

Example: T2 ∈ Cλ(I ) but Ts /∈ Cλ(I ) for all s ∈ (1, 2).

Prop: Let f be piecewise affine with nonzero slopes and such that
its derivative does not exist at a finite set E . Then f ∈ Cλ(I ) iff

∀ y ∈ [0, 1) \ f (E ) :
∑

x∈f −1(y)

1
|f ′(x)|

= 1. (1)



Crookedness and pseudo-arc
Def: Let f : I → I , let a < b ∈ I and let δ > 0. We say that f is
δ-crooked between a and b if, for every two points c , d ∈ I such
that f (c) = a and f (d) = b, there are points c < c ′ ≤ d ′ < d such
that |b − f (c ′)| ≤ δ and |a− f (d ′)| ≤ δ. We will say that f is
δ-crooked if it is δ-crooked between every pair of points.
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Figure: Map f is 1/3-crooked.
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Crookedness and pseudo-arc
Def: Set I := [0, 1]. Let f : I → I , let a < b ∈ I and let δ > 0. We
say that f is δ-crooked between a and b if, for every two points
c , d ∈ I such that f (c) = a and f (d) = b, there are points
c < c ′ ≤ d ′ < d such that |b − f (c ′)| ≤ δ and |a− f (d ′)| ≤ δ. We
will say that f is δ-crooked if it is δ-crooked between every pair of
points.

0

1

1

f

a

b

dc c ′ d ′

Figure: Map f is 1/5-crooked.
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Crookedness and the pseudo-arc
Def: Let I := [0, 1]. Let f : I → I , let a, b ∈ I and let δ > 0. We
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Lem (Bing 1950’s & Minc,Transue, 1991): Nondegenerate contin-
uum Î is pseudoarc ⇐⇒ f : I → I is such that for every δ > 0
there is n ≥ 0 such that f n is δ-crooked.
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Pseudo-arc

Henderson’s interval map (approx.)

with 0 topological entropy, such that

Î is a pseudo-arc

Approx. of an interval map with

positive topological entropy, such that

Î is a pseudo-arc (Minc& Transue)

Computer simulation of an

approx. of pseudo-arc

(courtesy of Jan Boroński)

 



Strategy of proof that δ-crookedness of f n is typical in Cλ(I )

I Take any piecewise linear leo map g ∈ Cλ(I )
(Bobok,Troubetzkoy 2020 prove they are dense in Cλ(I )),

I For every ε > 0 there exists G ∈ Cλ(I ) such that G is
admissible3 and |G (t)− g(t)| < ε for every t ∈ I ,

I Perturb G with an arbitrary small perturbation λn,k ∈ Cλ(I ),
i.e. G̃ = G ◦ λn,k ∈ Cλ(I ),

I Fix η, δ ∈ R+ for G̃ . There ∃ an admissible map F ∈ Cλ(I )
and n ∈ N s.t. F n is δ-crooked and |G̃ (t)− F (t)| < η for
every t ∈ I (Minc,Transue 1990),

I Let F , f ∈ Cλ(I ) be two maps so that ρ(F , f ) < ε. If F is
δ-crooked, then f is (δ + 2ε)-crooked (Minc,Transue 1990).

3G is admissible if it is leo and |G ′(x)| > 4 for all x ∈ I where it is defined.



Assumptions λn,k needs to fulfill

Perturbations λn,k need to satisfy the following. Set ε := n−1
n+k−1

and γ := 1
n+k−1 . Then the following statements hold for every odd

integer n ≥ 7 and k ≥ 1:
(i) λn,k ∈ Cλ(I ) has constant slope.

(ii) |t − λn,k(t)| < ε/2 + γ for each t ∈ I ,

(iii) for every a and b such that |a− b| < ε, λn,k is γ-crooked
between a and b,

(iv) for each subinterval A of I we have diam(λn,k(A)) ≥ diam(A),

and if, additionally, diam(A) > γ, then

(v) diam(λn,k(A)) > ε/2,

(vi) A ⊂ λn,k(A) and

(vii) λn,k(B) ⊂ B(λn,k(A), r + γ) for each real number r and each
set B ⊂ B(A, r).



Simple n-crooked maps (Lewis&Minc, 2010)
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Figure: Simple n-crooked maps σn for n = 1, . . . 7.
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Building blocks of perturbations λ̂n,k

0

1/7

2/7

3/7

4/7

5/7

6/7

1
σ7σR−6 σL−6

i i + η i + 1− η i + 1

2

18

58

83

58

18

2

Figure: Building blocks of the function λ̂n,k for n = 7.



Perturbations λ̂n,k and λn,k (with a flip)
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Inverse limits and natural extensions revisited
Thm (Č., Oprocha, 2021) For a typical map f ∈ Cλ(I ), space Î is
the pseudo-arc.

Natural projection π0 : Î → I defined by π0(x) = x0
semi-conjugates f̂ to f .

I I

ÎÎ

f
π0

f̂

π0

Say that g : Y → Y is an invertible dynamical system and
p : Y → I factors g to f , then p factors through π0: i.e. f̂ is the
simplest invertible system which extends f .

I I

ÎÎ
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f
π0

f̂
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ππ
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p = π0 ◦ π
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Natural projection π0 : Î → I defined by π0(x) = x0
semi-conjugates f̂ to f .

I I

ÎÎ
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The second result
Question 2: Without involving measures, can we find a natural space
of interval maps for which the typical inverse limit is pseudo-arc?

Def: Denote by CDP(I ) ⊂ C (I ) the class of interval maps with the
dense set of periodic points. The space (CDP(I ), ρ) is closed in
(C (I ), ρ) and thus it is a complete space as well.

Obs: Let f be an interval map. The following conditions are
equivalent.
(i) f has a dense set of periodic points, i.e., Per(f ) = I .
(ii) f preserves a nonatomic probability measure µ with

supp µ = I .
(iii) There exists a homeomorphism h of I such that

h ◦ f ◦ h−1 ∈ Cλ(I ).

Thm (Č., Oprocha, 2021) For a typical map f ∈ CDP(I ), space Î is
the pseudo-arc.
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The third result
There is a prescribed way to make Î attractor of some o.p. plane
homeomorphism using the Brown-Barge-Martin embeddings.
Question 3: Are these planar embeddings of the pseudo-arc maybe
all dynamically the same?

Thm (Č, Oprocha, 2021): There is a parameterised family of
homeomorphisms {Φt}t∈I ⊂ H(D,D) with I ⊂ T ⊂ Cλ(I ) where
T is a dense Gδ set from above such that:
(a) For each t ∈ I there is a Φt-invariant set Λt ⊂ D homeomorphic to

the pseudo-arc so that:
(i) Φt |Λt : Λt → Λt is topologically conjugate to f̂t : Ît → Ît .
(ii) If x ∈ D \ ∂D, then the omega limit set ω(x ,Φt) ⊂ Λt .

(b) The attracting sets {Λt}t∈I vary continuously in Hausdorff metric.

(c) Prime ends rotation numbers of homeomorphisms {Φt}t∈I vary
continuously in the interval [0, 1/2].

(d) There are countably many dynamically different embeddings of
pseudo-arc in the family {Λt}t∈I .
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The fourth result: measure-theoretical BBMs
Thm(Č., Oprocha, 2021): There is a typical set T̃ ⊂ Cλ(I ) and a param-
eterized family of o. p. homeomorphisms {Φf }f∈T̃ ⊂ H(D,D) so that:

(a) for each f ∈ T̃ there is a compact Φf -invariant set Pf ⊂ D homeomorphic to the pseudo-arc so

that:

(i) Φf |Pf is topologically conjugate to f̂ : Îf → Îf .

(ii) If x ∈ D \ ∂D, then the omega limit set ω(x,Φf ) ⊂ Pf .

(b) the attractors {Pf }f∈T̃ vary continuously with f ∈ T̃ in the Hausdorff metric.

(c) for each f ∈ T̃ the attractors Pf preserve induced measure µf

invariant for Φf for any f ∈ T̃ . Let λf be an induced Oxtoby-Ulam
measure on D. There exists an open set U ⊂ D which for each f
contains Uf ⊂ U so that λf (Uf ) = λ(U) and Uf is in the basin of
attraction of µf . In particular each µf is physical measure.

(d) there exist a dense countable set of maps g ∈ T̃ for which µg is
the unique physical measure, i.e. its basin of attraction has the full
λg -measure in D.

(e) Φf |Pf
are topologically mixing, have the shadowing property and

are weakly mixing wrt µf .
(f) measures µf vary continuously in the weak* topology.



Thank you!



A family {ft}t∈I ⊂ T
For any t ∈ I let ft be defined ft(

2
7) = ft(

4
7) = ft(

17
21) = ft(1) = 0

and ft(
3
7) = ft(

5
7) = ft(

19
21) = 1 and piecewise linear between these

points on the interval [2
7 , 1]. Furthermore on interval x ∈ [0, 2

7 ] let:

ft(x) =



7(x − t 4
21); x ∈ (1− t)[0, 1

7 ] + t 4
21 ,

1− 7(x − 1
7(1− t)− t 4

21); x ∈ (1− t)[1
7 ,

2
7 ] + t 4

21 ,
21
2 (x − t 2

21); x ∈ t[ 2
21 ,

4
21 ],

1− 21
2 x ; x ∈ t[0, 2

21 ],

1− 21
2 (x − t(2

7 − t 2
21)); x ∈ t[2

7 − t 2
21 ,

2
7 ].
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Block, Keesling, Uspenskij argument

Thm (Block, Keesling, Uspenskij, 1999): Set of maps f ∈ C (I ) for
which lim←−(I , f ) is pseudo-arc is nowhere dense in C (I ).


