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Motivational questions and Objectives
Goals

Questions:

(1) Is it always true that a sensitive subsystem leads to a general sensitive

system?

(2) Can a certain level of chaoticity be determined by particular

conditions of sensitivity?

Objective:

Study the sensitivity levels of Turing Machines in TDS.
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Generalizations About Topological Dynamical Systems in
Turing Machines
definition

The Turing machine is an abstract mathematical computational

model consisting of a tape of infinite length, divided into cells with a

given input and a head that reads the input tape, which was

introduced in 1936.
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Generalizations about Topological Dynamical Systems in
Turing Machines
references

The study of the Turing machine from the point of view of dynamics
systems was initiated by Moore [39] and first studied by Kurka
[32, 33].

Separately, both authors formalized three dynamic models:
Generalized Shifts, Turing Machine with Moving Head and Turing
machine with moving tape, all abbreviated as GS , TMH and TMT .
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Classical Movement

After reading an input symbol, it is replaced with another symbol, its
internal state is changed, and it is moved from one cell to some
direction (left (L) or right (R) ).
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Formally, the classical Turing machine is composed of a finite set of
states (denoted by Q),on alphabetic tape (denoted by Σ ), an
alphabetic entry, a transition map (δ : Q × Σ→ Q × Σ× {−1, 0, 1},
where the set with -1,0 and 1 represents the directions), an initial and
final state and a blank symbol
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Here the instruction is modified, replacing the direction of the
instruction, by all the configurations of Q. Furthermore, here there is
no a blank symbols, just two symbols Σ = {0, 1} and also, it doesn’t
stays in the same position by movement.
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Example of Turing Machine

An example of how the machine works is a machine with a finite set
Q with three states (denoted as Q = {q0, q1, q2}, with the initial
state qi and the final state qf ), a set Σ with two symbols or letters
(also written as Σ = {0, 1}), with input and output alphabets xi and
xf . Then, the instruction is to change xi to xf , moving the head, into
the right or left, changing the state qi to qf . In our scheme, the
formal instructions seems as:
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Remark 1: To obtain a better observation of the classic Machine, replace
all the elements, which do not point to the current symbol by zero, and
then project on the head settings.
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Other examples are SMART and BINSMART machines. The fist one
contains four states, three symbols (0, 1, 2) and representing as a
dynamical system, is aperiodic, symmetric and minimal (then transitive).
The second one, contains eight states, two symbols (0, 1) and it’s
transitive. For more details, read the results of [4, 5].
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Generalizations about Topological Dynamical Systems in
Turing Machines
references

En [30, 32] The properties of sensitive and chaos are studied in Turing
machines and Cellular Automata among some.
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Sensitive in Turing Machine

In [30] the sensitivity system according to Turing Machines was defined as:

The system (X ,F ) is sensitive if there exists a finite observation window

W ⊂ Z, such that:

∀E ⊆ Z : ∀x ∈ X ,∃y ∈ X , ∃n ∈ N : xE = yE and (F n(x))W 6= (F n(y))W .

We’ll call to this system classical sensitive wrt TM
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Next, let’s defines a shift map σ : ΣN0 → ΣN0 , where σ(x)i = xi+1. About
the metric, which it denotes dΣN0 , it can be represented as:

dΣN0 (σn(x), σn(y)) =

{
0 , xi+n = yi+n, i ≥ 0

2− inf{j≥0:xj+n 6=yj+n}, xi+n 6= yi+n, i ≥ 0
(1)

Clearly, by talking about sensitive, there is a constant M ∈ N0, such that
for n ∈ N, M > inf {j ≥ 0 : xj+n 6= yj+n}. For this case, We are going to
refer the system (ΣN0 , σ) as σ-sensitive
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With respect of the Turing Machine’s dynamical system, the metric on
Mω =ω Σ× QZ × Σω, which it denotes as dMω , has the form:

dMω(δn(a), δn(n)) =

{
0 , ai+n = bi+n, i ≥ 0

2− inf{j≥0:aj+n 6=aj+n}, bi+n 6= bi+n, i ≥ 0
, (2)

For a, b ∈Mω. Similarly, by talking about sensitive, there is a constant
M ′ ∈ N0, such that for n ∈ N, M ′ > inf {j ≥ 0 : aj+n 6= bj+n}. For this
case, We are going to refer the system (Mω, δ) as δ-sensitive.

Remark 2: δ := δωΣ × δQZ × σ ∈ C (Mω), where
δωΣ :ω Σ→ω Σ,
δQZ : QZ → QZ

δΣω : Σω → Σω,
About the system with the maps δωΣ and δΣω are quite similar to σ, since
the elements are in Σ, but with this map. Otherwise, the metric over QZ

is just discrete, since the states of two systems could be the same or not.
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Result 1

Proposition 1

Let (Mω, δ) be a system. Then, the following statements are true:

(1) The system is δ-sensitive

(2) The system has at least one map conforming δ, which is sensitive.

Idea of the proof: (2) ⇒ (1) is obvious. Conversely, choose some of the
maps in any case. the head depends of the elements of Σ ( in particular,
of the element, which is above of it). However, the sensitive properties are
not directly related, since the movement is because the action generated
by δΣω and δωΣ. Then, it’s easy to check that:

δΣω -sensitive ⇒ δQZ-sensitive

δωΣ-sensitive ⇒ δQZ-sensitive

However, conversely it’s not true.
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Result 1

Now, Fixing x0 ∈ Σ and i ∈ Z, we have a state s0 and an instruction of
the Machine, which always connect xi with si . The same can be applying
for yi and si . Then, fixing j ∈ Z, as the first element, where
δQZ(...0.s0...) 6= δQZ(...0.s0...), it doesn’t implies that the elements of the
tape are distinct, but it implies that the elements of Mω are separated.
Since the tape doesn’t change, then j is also the first element also for δ.
Using the definitions of below, we can complete the proof.
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About Question 1

Now, suppose that δliΣω := σi , for l : N→ N, with li < li+1 for any i ∈ N.
Then, since we have M as the constant of sensitive for (ΣN0 , σ), then we
have some n ∈ N, such that l(M) > li+n. Since the system is δ-sensitive,
we fix M ′, where M ′ > li+n. However, clearly, in the whole process, we
start assuming that if the machine perfectly imitates to the shift map,
then li = i , but in general li ≥ i for any i ∈ N. Having this idea, is easy to
affirm that if system is δ-sensitive, then is σ-sensitive. Otherwise, it’s not
so clear to prove the converse part, but we talk about it below.
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Furstenberg family

Let N the set of positive integers and P the collection of all subsets of N.
A collection F ⊂ P is a Furstenberg family if it’s hereditary upwards (i.e
F1 ⊂ F2, F1 ∈ F ⇒ F2 ∈ F)

The dual family is F∗ = {A ⊂ N : N \ A /∈ F}
F is proper if it is a nonempty proper set of the family P (i.e F ∈ P,
but ∅ /∈ F)

Set Finf the collection of all infinite subsets of N
Ft = {A ⊆ N : (∀m ∈ N)(∃m ∈ N) : {m,m + 1, ..,m + n} ⊂ A} thick

Fs the collection of all syndetic subsets of N, i.e Fs = F∗t
Fps the collection of all piece wise syndetic subsets of N, i.e
Fps = {F ∩ G ∈ F : F ∈ Ft ∧ G ∈ Fs}
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Block family
Classical Definition and some results [5]

Let F be a family. The block family of F , denoted by bF can be written
as the collection:

bF = {A ⊂ N : ∃F ∈ F , (∀m ∈ N)(∃am ∈ N) : am + [0,m] ∩ F ⊂ A}

Some results about the block family are in [5]

(1) b(bF) = bF
(2) bFinf = Finf

(3) bFs = bFps = bFpubd

(4) bF∗inf = Ft

Remark 1: Since (2) is true, now suppose that A ⊂ Finf , that doesn’t
imply neither bA = A, nor A is really a family. Anyway, we denote A as a
sub-collection of family of Finf .
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Definition of F − Sensitive

Definition 2

Let (ωΣ× QZ × Σω, δ) be a system. The system is F − sensitive if for a
finite observation window W ⊂ Z, the set N(E ,W ), which is equals to{
n ∈ N : E ⊆ Z : x , y ∈ω Σ× QZ × Σω : xE = yE , (F

n(x))W 6= (F n(y))W

}
belongs to F
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About the Machine

Let {si}i∈Z ∈ QZ, with a finite number of non null states (i.e sj 6= 0 for
j ∈ A with A ⊂ Z as finite). Then, the Turing Machine can be represented
as: (

...x−2x−1x0x1x2x3...xj ...
00.....s0.......0..0

)
∈Mω (3)

where only the central position 0 has a state at a given instant, and hence
the head’s tape below is a finite cylinder, which goes changing while the
tape is shifting under the action of the transition map.

Next, when transition map is applied over N, the state starts to
change, however, although the state changes, there is only one state
in the configuration below.

Furthermore, depending on the initial state of the symbols, the
instruction leads the head to move in one direction, while the symbol
changes to a known value.
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Before to continue, let define [a1...aM ]r ,Σ and [b1....bM′ ]r ′,Q as cylinders
over ΣZ and QZ, in where:

[a1...aM ]r ,Σ =
{
x ∈ ΣZ : xi+r = ai , i ∈ [[1,M]]

}
(4)

[b1...bM′ ]r ′,Q =
{
s ∈ QZ : si+r ′ = bi , i ∈ [[1,M ′]]

}
(5)

An example, if x0 = 0 and {s0, s1} ⊂ Q, suppose that the instruction for
move the tape in join with the head from [s0]0,Q to [s1]1,Q is 0 : 1 to the
right. Otherwise, if x0 = 1 and it’s above s0, the instruction is 1 : 0 to the
left.
Then, the sub graph of the machine can be expressed as:
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For this occasion, the transition map was modified to include the
direction in terms of finite cylinders. This process preserves the
classical results if there are a finite number of states.

Now, I’m going to assume that x ∈ [a0a1...aj ]0 for j ∈ N, then there is a
time of process, who depends of the position of the initial tape and the
internal process of the machine. Fixing a position i ∈ N, the number of
step of time of process, denoted as li : Z→ N, can be expressed as:

(
ai ai+1...aj
sli 0..........

)
ali+1

(
ai+1 ai+2...aj
sli+1

0..........

)
(6)

where, for i + 2 < j and i ∈ N.This type of Turing Machine, I’ll call it
system with rule 1, which the rules of the rule 1 are (4) and the properties
of our new δ.

Naturally, the sequence (li )i∈Z is increasing over N.
Clearly, in this process with have a dynamic generated by a sub-orbit
of (ΣN, σ), which it preserves the properties of our interesting, since
my intention is to study forward orbits.
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Result about sensitive system for one sided full shift

Suppose that there is two Turing machines equals between them on
the first j terms. When j = inf {m ≥ 0 : xl 6= yl} ( or in the classical
sense, I define W with {j} ⊂W .

For the classical case, it is enough to know that W has only one
element, to prove that the system is sensitive. However and more
interesting, we can find out the number of steps, just with find the
existence of instructions where the above moves the tape through a
series of processes. Hence, we must to compute the length of the
cylinder in which the rules lead to the observed sub process.
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Result 2

Proposition 3

Let (Mω)x2, δx2) be the product of the system, with each one having the
rule 1. Then there exists a sub sequence {li}∞i=0, such that there exists at
least one element of FS({li}∞i=0), which is into the set N(W ,E )

I prove this proposition, using the following corollary

Corollary 4

Let [x̄ j−1aj ]0,Σ × [x̄ j−1bj ]0,Σ ⊂ ΣZ × ΣZ

Since x̄ = a0...aj−1. Then the finite set
∑j

t=0 it + {0, 1} ⊂ N(W ,E )

Since aj , bj are arbitrary values and the head moves with the tape by our
rule 1. When the number of steps goes to the sum without addition, the
corollary 3 is true, since the process describe the orbit of the one sided full
shift, which is chaotic, according to [4], hence sensitive. The other
element is in N(W ,E ), since the configuration in general is separated by
the elements of Q.
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Extension of the result for infinitely many different
elements

.
Firstly, fix j ∈ N as the first arrival to xj 6= yj . Since each relation between
states have the same input and output symbols
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In this last picture, m,m′, l , l ′,M are all arbitrary. Now, suppose that the
orbit of a cylinder of length j is well known for each process and Q have
M states. Then, since Proposition 2 is true, it’s possible to find an infinite
sequence of integers, whose has a maximum, which be an element of W .
For this occasion, we will assume that j is large enough and for a sequence
(kr )∞r=1 with xkr 6= ykr and kr ∈ [[1, j ]]. Since the rule 1 is assumed, I can
construct a set nr = j +

∑r
r ′=1 kr ′ , when r ′ 6= 0 and j otherwise. Since j is

quite big, I have the following remark:

Proposition 5

Let x , y ∈ ΣZ and the system has rule 1, then{∑n(r)
i=1 li + {0, ..., r + 1}

}∞
r=0
⊂ N(W ,E )
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Question 1

Now, by proposition 5 , we can affirm that since the system (ΣN, σ) is
σ-sensitive, then the system is δ-sensitive, if the first j − 1 elements of the
tape are all equal. Now, in general, we don’t know if both machines has
simultaneous arrivals in li , reason why we consider in particular the rule 1.
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With the result of Proposition 4, we can affirm the following:

Proposition 6

The system with rule 1 is bFinf

This result is helpful for research other type of dynamical properties and
classify stronger levels of chaoticity for machines known ( ex. The
aforementioned BINSMART is minimal and also sensitive, since always
there’s a disturbance on the side of the tape to be scanned will be seen at
the head). Since this rule can be inherited depending the information that
one has about the cylinders or their construction, this system can be
described as sensitive in a global sense.
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About the machine

Suppose that x ∈ [11111111.11111100000]−9 and
y ∈ [11111111.1111100001]−9

Here, fixing j = 6, the number of steps, the number of steps are 11, since
x0 = 1 and y0 = 1. Since from j > 6, the elements are different, it’s easy
to check that the system is sensitive, but not chaotic. Also, this machine
is almost periodic in both sequences.
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Remark

Proposition 7

Let (Mω, δ) be a system with rule 1. Suppose in addition that there is a
r ′ > 1, such that kr ′ > 1, then the system is chaotic in sense of Li-Yorke.

Since the machine can return back to the left side and project infinitely
many elements equal and different, since for any process, it contains a
configuration generated by a dynamic with σ-sensitive.
Now, we just need to check that having any two different process,we just
need to check if we can write any sub process as uncountable. And that’s
our point:
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Question 2

Proposition 8

Let (Mω, δ) be a system with rule 1. There exists a semi-conjugated map
π : X → ΣN0 , such that if X is perfect and dim(X ) <∞, then the system
is chaotic in sense of Li-Yorke.

Mauricio D́ıaz (Adaptation1) Levels of local chaos for special Blocks Families and applications for Turing MachineThe 9th Visegrad Conference Dynamical Systems, Prague 2021, 15-June 34 / 46



Future works

Find Turing Machine that are chaotic in sense of ergodic measures

Find a Turing machine, which would be locally chaotic in other sense,
or it has no rule 1.
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