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Minimal dynamical systems

Let a dynamical system X = (X ,T ) consist of
a metrizable topological space X and
a continuous map T : X → X .

Recall that the system X (or the map T ) is called minimal if all its
(forward) orbits

OX (x) =
{
T nx : n ≥ 0

}
(x ∈ X )

are dense in X .
A space X is called minimal if it admits a minimal map T : X → X .
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Minimal dynamical systems

G. D. Birkhoff: Quelques théorèmes sur le mouvement des
systèmes dynamiques, Bulletin de la Société mathématiques
de France, 40 (1912), 305-323.
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Minimal dynamical systems

Why do we study minimal systems?

1 Minimal systems are the irreducible ones — they are the ones
that do not possess any proper closed subsystem.

2 Minimal systems are (almost) everywhere — every dynamical
system on a compact space has a closed minimal subsystem.

3 Minimal systems are often viewed as topological analogues of
ergodic systems from ergodic theory.

4 Aesthetic reasons — there is certain beauty to this notion and
the theory around it.

Matúš Dirbák Product-minimal spaces



Minimal dynamical systems

Why do we study minimal systems?

1 Minimal systems are the irreducible ones — they are the ones
that do not possess any proper closed subsystem.

2 Minimal systems are (almost) everywhere — every dynamical
system on a compact space has a closed minimal subsystem.

3 Minimal systems are often viewed as topological analogues of
ergodic systems from ergodic theory.

4 Aesthetic reasons — there is certain beauty to this notion and
the theory around it.

Matúš Dirbák Product-minimal spaces



Minimal dynamical systems

Why do we study minimal systems?

1 Minimal systems are the irreducible ones — they are the ones
that do not possess any proper closed subsystem.

2 Minimal systems are (almost) everywhere — every dynamical
system on a compact space has a closed minimal subsystem.

3 Minimal systems are often viewed as topological analogues of
ergodic systems from ergodic theory.

4 Aesthetic reasons — there is certain beauty to this notion and
the theory around it.

Matúš Dirbák Product-minimal spaces



Minimal dynamical systems

Why do we study minimal systems?

1 Minimal systems are the irreducible ones — they are the ones
that do not possess any proper closed subsystem.

2 Minimal systems are (almost) everywhere — every dynamical
system on a compact space has a closed minimal subsystem.

3 Minimal systems are often viewed as topological analogues of
ergodic systems from ergodic theory.

4 Aesthetic reasons — there is certain beauty to this notion and
the theory around it.

Matúš Dirbák Product-minimal spaces



Minimal dynamical systems

Why do we study minimal systems?

1 Minimal systems are the irreducible ones — they are the ones
that do not possess any proper closed subsystem.

2 Minimal systems are (almost) everywhere — every dynamical
system on a compact space has a closed minimal subsystem.

3 Minimal systems are often viewed as topological analogues of
ergodic systems from ergodic theory.

4 Aesthetic reasons — there is certain beauty to this notion and
the theory around it.

Matúš Dirbák Product-minimal spaces



Some equivalent formulations of minimality

For a dynamical system X = (X ,T ) on a compact space X , the
following conditions are equivalent:
(i) all forward orbits of X are dense,
(ii) X is the only ω-limit set of X ,
(iii) (∀U ⊆ X nonempty open)(∃N ≥ 1) : X =

⋃N
n=1 T−n(U),

(iv) the only closed forward-invariant sets are ∅ and X ,
(v) the only open backward-invariant sets are ∅ and X ,
(vi) all invariant Borel probability measures of X have full support.
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Some equivalent formulations of minimality

If T is, in addition, a homeomorphism then the following
conditions are also equivalent to minimality of X :

(vii) all backward orbits of X are dense,
(viii) all full orbits of X are dense,
(ix) (∀U ⊆ X nonempty open)(∃N ≥ 1) : X =

⋃N
n=1 T n(U).

Remark 1
We infer from condition (iii) that minimality is a Gδ-property. This
suggests the possibility of using Baire category method to verify
the existence of minimal maps.
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‘Strange’ minimal spaces

Theorem 1 (Downarowicz, Snoha, Tywoniuk, 2015)

There exist one-dimensional continua X with the following
properties:

the homeomorphism group H(X ) of X is infinite cyclic,
all (non-identical) homeomorphisms on X are minimal,
there are no non-invertible minimal transformations on X.

Theorem 2 (Boroński,Činč, Foryś-Krawiec, 2019)
For every h ∈ [0,∞) there exists a compact space Zh with the
following properties:

Zh admits a minimal map with topological entropy h,
the homeomorphism group of Zh is degenerate.
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‘Strange’ minimal spaces

Theorem 3 (Boroński, Clark, Oprocha, 2016)
There exists a continuum Y with the following properties:

Y admits a minimal homeomorphism,
Y × Y does not admit any minimal homeomorphism.

Theorem 4 (Snoha, Špitalský, 2018)
The spaces X constructed by Downarowicz, Snoha and Tywoniuk
have the following properties:

X admits a minimal homeomorphism,
X × X admits no (invertible or non-invertible) minimal maps.
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Product-minimal spaces — motivation
Thus, there are minimal spaces admitting ‘very few’ minimal maps.

However, in many other situations, the minimality of a space Y is
verified by means of the Baire category argument applied to an
appropriate space of continuous maps on Y . We then tend to
think of such a space Y as a one containing many minimal maps.
But what should be an exact criterion for determining whether Y
“admits many minimal maps”?

Theorem 5 (Kolyada, Snoha, Trofimchuk, 2014)

Given an arbitrary minimal system X , there is an irrational rotation
R on S1 such that the product X ×R is minimal.

Remark 2
Thus, the circle S1 admits minimal homeomorphisms which are
independent, in the sense of disjointness, from an arbitrary given
minimal system X .

Matúš Dirbák Product-minimal spaces



Product-minimal spaces — motivation
Thus, there are minimal spaces admitting ‘very few’ minimal maps.
However, in many other situations, the minimality of a space Y is
verified by means of the Baire category argument applied to an
appropriate space of continuous maps on Y .

We then tend to
think of such a space Y as a one containing many minimal maps.
But what should be an exact criterion for determining whether Y
“admits many minimal maps”?

Theorem 5 (Kolyada, Snoha, Trofimchuk, 2014)

Given an arbitrary minimal system X , there is an irrational rotation
R on S1 such that the product X ×R is minimal.

Remark 2
Thus, the circle S1 admits minimal homeomorphisms which are
independent, in the sense of disjointness, from an arbitrary given
minimal system X .

Matúš Dirbák Product-minimal spaces



Product-minimal spaces — motivation
Thus, there are minimal spaces admitting ‘very few’ minimal maps.
However, in many other situations, the minimality of a space Y is
verified by means of the Baire category argument applied to an
appropriate space of continuous maps on Y . We then tend to
think of such a space Y as a one containing many minimal maps.

But what should be an exact criterion for determining whether Y
“admits many minimal maps”?

Theorem 5 (Kolyada, Snoha, Trofimchuk, 2014)

Given an arbitrary minimal system X , there is an irrational rotation
R on S1 such that the product X ×R is minimal.

Remark 2
Thus, the circle S1 admits minimal homeomorphisms which are
independent, in the sense of disjointness, from an arbitrary given
minimal system X .

Matúš Dirbák Product-minimal spaces



Product-minimal spaces — motivation
Thus, there are minimal spaces admitting ‘very few’ minimal maps.
However, in many other situations, the minimality of a space Y is
verified by means of the Baire category argument applied to an
appropriate space of continuous maps on Y . We then tend to
think of such a space Y as a one containing many minimal maps.
But what should be an exact criterion for determining whether Y
“admits many minimal maps”?

Theorem 5 (Kolyada, Snoha, Trofimchuk, 2014)

Given an arbitrary minimal system X , there is an irrational rotation
R on S1 such that the product X ×R is minimal.

Remark 2
Thus, the circle S1 admits minimal homeomorphisms which are
independent, in the sense of disjointness, from an arbitrary given
minimal system X .

Matúš Dirbák Product-minimal spaces



Product-minimal spaces — motivation
Thus, there are minimal spaces admitting ‘very few’ minimal maps.
However, in many other situations, the minimality of a space Y is
verified by means of the Baire category argument applied to an
appropriate space of continuous maps on Y . We then tend to
think of such a space Y as a one containing many minimal maps.
But what should be an exact criterion for determining whether Y
“admits many minimal maps”?

Theorem 5 (Kolyada, Snoha, Trofimchuk, 2014)

Given an arbitrary minimal system X , there is an irrational rotation
R on S1 such that the product X ×R is minimal.

Remark 2
Thus, the circle S1 admits minimal homeomorphisms which are
independent, in the sense of disjointness, from an arbitrary given
minimal system X .

Matúš Dirbák Product-minimal spaces



Product-minimal spaces — motivation
Thus, there are minimal spaces admitting ‘very few’ minimal maps.
However, in many other situations, the minimality of a space Y is
verified by means of the Baire category argument applied to an
appropriate space of continuous maps on Y . We then tend to
think of such a space Y as a one containing many minimal maps.
But what should be an exact criterion for determining whether Y
“admits many minimal maps”?

Theorem 5 (Kolyada, Snoha, Trofimchuk, 2014)

Given an arbitrary minimal system X , there is an irrational rotation
R on S1 such that the product X ×R is minimal.

Remark 2
Thus, the circle S1 admits minimal homeomorphisms which are
independent, in the sense of disjointness, from an arbitrary given
minimal system X .

Matúš Dirbák Product-minimal spaces



Product-minimal spaces — definition

Definition 6 (Product-minimality)
A compact metrizable space Y is called product-minimal (briefly,
PM) if for every minimal system (X ,T ) there is a continuous map
S : Y → Y such that the product (X ,T )× (Y ,S) is minimal.

Definition 7 (Homeo-product-minimality)
A compact metrizable space Y is called homeo-product-minimal
(briefly, HPM) if for every minimal system (X ,T ) there is a
homeomorphism S : Y → Y such that the product (X ,T )× (Y , S)
is minimal.

Remark 3
In this terminology, the circle S1 is HPM and, of course, also PM.
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First observations on (H)PM-spaces

Proposition 1

The following statements hold.
(1) HPM ⇒ PM ⇒ M, while the converse implications are not

true.

(2) A PM-space is either connected or possesses c components.
(3) The class of (H)PM-spaces is closed with respect to finite and

countably infinite products.
(4) The family of isomorphism classes of minimal transformations

on a nondegenerate PM-space is uncountable. The same is
true for isomorphism classes of minimal homeomorphisms on
an HPM-space.
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Proof of Proposition 1(4)

Proof.
So let Y be a nondegenerate product-minimal space and assume,
on the contrary, that it admits only countably many mutually
non-isomorphic minimal maps Sn (n ∈ N). For every n ∈ N write
Yn = (Y ,Sn) and consider the product system

X =
∏
n∈N
Yn.

By compactness, X has a (closed) minimal subsystemM. Now all
the projections

Prn : X → Yn.

are homomorphisms of dynamical systems. Thus, by minimality,

Prn : M→ Yn

are surjective.
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Proof of Proposition 1(4)

Proof.
It follows thatM is an extension of each Yn and, consequently,
M×Yn is an extension of Yn × Yn for every n.

Since Y is
nondegenerate, the product system Yn × Yn is not minimal, hence
its extensionM×Yn is not minimal either. However, Yn (n ∈ N)
exhaust all possible minimal systems on Y (up to isomorphism).
Hence,

the product ofM with an arbitrary minimal system on Y is
not minimal.

This contradicts the assumption that Y is product-minimal.
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Some examples of HPM-spaces

Theorem 8

The following spaces are HPM:

(a) every compact connected metrizable abelian group,
(b) the Cantor space,
(c) the Klein bottle,
(d) the Sierpiński curves on the torus and on the Klein bottle,
(e) every compact connected Lie group,
(f) every odd-dimensional sphere.
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Proof of Theorem 8(a)

Let
G be a compact connected metrizable abelian group,
µ be the normalized Haar measure on G .

For every positive integer n, consider

En : G → G , g 7→ gn.

All En are surjective endomorphisms of G , hence they preserve
measure µ. Notice that

En ◦ Em = Enm for all n,m.

Thus, we have a measure-preserving action of the multiplicative
semigroup N? = (N, ·) on G .
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Lemma 9

The action of N? on G described above is mixing in the sense that

lim
n→∞

µ
(
A ∩ E−1

n (B)
)

= µ(A)µ(B) (1)

for all measurable sets A,B ⊆ G.

Proof.
Formula (1) can be rewritten, in the usual way, as

lim
n→∞

∫
χA · (χB ◦ En) dµ =

∫
χA dµ

∫
χB dµ.

Now, characteristic functions of measurable sets generate a dense
linear subspace of L2(µ). Consequently, our problem translates into
showing that
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Proof.

lim
n→∞

∫
f · (g ◦ En) dµ =

∫
f dµ

∫
g dµ ∀ f , g ∈ L2(µ).

Since the characters of G form a complete orthonormal system in
L2(µ), it is sufficient to verify that

lim
n→∞

∫
γ · δn dµ =

∫
γ dµ

∫
δ dµ ∀ γ, δ ∈ G∗.

So let γ, δ ∈ G∗ and recall that∫
% dµ = 0 ∀ % ∈ G∗, % 6= 1.
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Proof.

lim
n→∞

∫
γ · δn dµ ?=

∫
γ dµ

∫
δ dµ.

If δ = 1, the equality is true. So let δ 6= 1. Since G is connected,
G∗ is torsion-free. Consequently, γ · δn = 1 may occur for at most
one n. Thus, ∫

γ · δn dµ = 0 =
∫
γ dµ

∫
δ dµ

for all sufficiently large n.
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Lemma 10

The action of N? on G described above is topologically mixing in
the sense that

∀V ,W ⊆ G nonempty open ∃m ∀ n ≥ m : V ∩ E−1
n (W ) 6= ∅.

Proof.
Fix V ,W . Since µ has full support, µ(V ), µ(W ) > 0.
Consequently, by Lemma 9,

lim
n→∞

µ
(
V ∩ E−1

n (W )
)

= µ(V )µ(W ) > 0,

hence
µ
(
V ∩ E−1

n (W )
)
> 0

for all sufficiently large n.
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Now let X = (X ,T ) be a minimal system.

Given a ∈ G , denote by
Ra the rotation of G by a and write Ra = (G ,Ra).

Lemma 11

If the product system X ×Ra possesses a dense orbit then it is
minimal.

Proof.
Let (x , b) be a point with a dense orbit.
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Proof.
Notice that G acts on X × G by means of vertical rotations, each
of which is an automorphism of X ×Ra.

Since the action is
transitive on fibres, all points from {x} × G have dense orbits.
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Proof.
To show that X ×Ra is minimal, fix arbitrary (z , h) ∈ X × G .

Since X is minimal, x ∈ O(z).

Matúš Dirbák Product-minimal spaces



Proof.
To show that X ×Ra is minimal, fix arbitrary (z , h) ∈ X × G .

Since X is minimal, x ∈ O(z).

Matúš Dirbák Product-minimal spaces



Proof.
To show that X ×Ra is minimal, fix arbitrary (z , h) ∈ X × G .

Since X is minimal, x ∈ O(z). Consequently, by compactness of
G , (x , g) ∈ O(z , h) for some g ∈ G .

Hence

O(z , h) ⊇ O(x , g) = X × G .

Matúš Dirbák Product-minimal spaces



Proof.
To show that X ×Ra is minimal, fix arbitrary (z , h) ∈ X × G .

Since X is minimal, x ∈ O(z). Consequently, by compactness of
G , (x , g) ∈ O(z , h) for some g ∈ G . Hence

O(z , h) ⊇ O(x , g) = X × G .

Matúš Dirbák Product-minimal spaces



Theorem 12
There is a ∈ G such that the product system X ×Ra is minimal.
Thus, G is an HPM-space.

Proof.
Fix x ∈ X and write e for the identity of G . Given nonempty open
sets U ⊆ X , W ⊆ G , set

HU,W =
{
a ∈ G : OX×Ra(x , e) ∩ (U ×W ) 6= ∅

}
=

{
a ∈ G : (∃ n)(T nx ∈ U and an ∈W )

}
=

{
a ∈ G : (∃ n)(T nx ∈ U and a ∈ E−1

n (W ))
}
.

Now let B and C be countable bases of X and G , respectively. By
virtue of Lemma 11, the system X ×Ra is minimal if, and only if,

a ∈
⋂

U∈B

⋂
W∈C

HU,W .
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Proof.
Consequently, to finish the proof, it is sufficient to show that our
sets

HU,W =
{
a ∈ G : (∃ n)(T nx ∈ U and a ∈ E−1

n (W ))
}

are open and dense in G .

The openness is clear. To verify density,
fix a nonempty open set V ⊆ G . By Lemma 10,

∃m ∀ n ≥ m : V ∩ E−1
n (W ) 6= ∅.

Fix n ≥ m with T nx ∈ U. Then

∅ 6= V ∩ E−1
n (W ) ⊆ V ∩ HU,W .

Thus, HU,W is dense, indeed.
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PM but not HPM — example

Theorem 13
Every cantoroid is a PM-space.

Recall that a cantoroid is a compact metrizable space without
isolated points, whose degenerate components are dense. There
are cantoroids which do not admit any minimal homeomorphism.

These cantoroids are PM but not HPM.
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Open problem — generalized solenoids

Theorem 14

Let Y be a compact metrizable space and let φ = (ϕt)t∈R be a
minimal continuous flow on Y . Consider the centralizer Z (φ) of φ
in H(Y )

Z (φ) = {h ∈ H(Y ) : h ◦ ϕt = ϕt ◦ h for every t ∈ R}.

If Z (φ) acts transitively on Y in the algebraic sense then Y is
HPM.

Question 1
Does the theorem remain true if we drop the assumption of
transitive centralizer?

Question 2
Are all generalized solenoids HPM?
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Minimal flows with transitive centralizers — example

Example 15
Let G be a compact connected metrizable abelian group.

Then G
is solenoidal — it admits a dense homomorphism q : R→ G .
Consider the isometric continuous flow φ = (ϕt)t∈R generated by
q:

ϕt : G → G , ϕt(g) = q(t) · g .

Since q is dense, φ is minimal. The centralizer Z (φ) of φ contains
all rotations of G , hence it acts transitively on G in the agebraic
sense.

Remark 4
Every solenoid is a compact connected metrizable abelian group,
hence admits a minimal flow with a transitive centralizer.
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Proof of Theorem 14
Let

Y be a compact metrizable space and
φ = (ϕt)t∈R be a minimal continuous flow on Y .

Assume that the centralizer Z (φ) of φ acts transitively on Y and
fix a minimal dynamical system X = (X ,T ). For every t ∈ R set
Yt = (Y , ϕt).

Lemma 16
There is a residual set A ⊆ R such that the product system X ×Yt
has a dense orbit for every t ∈ A.

Proof.
Fix x ∈ X and y ∈ Y . Given a nonempty open set V ⊆ Y , the set

Eφ(y ,V ) = {t ∈ R : ϕt(y) ∈ V }

is syndetic by minimality of φ and compactness of Y .
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Proof.
For nonempty open sets U ⊆ X and V ⊆ Y let

AU,V =
{
t ∈ R : (∃ k)((T × ϕt)k(x , y) ∈ U × V )

}

=
{
t ∈ R : (∃ k)(T k(x) ∈ U and ϕkt(y) ∈ V

}
=

{
t ∈ R : (∃ k)(T k(x) ∈ U and t ∈ 1

k Eφ(y ,V )
}
.

Clearly, AU,V is open in R. To show that AU,V is dense in R,
choose an increasing sequence (kn)∞n=1 so that

T kn(x) ∈ U for every n ∈ N.

Then
AU,V ⊇

∞⋃
n=1

1
kn

Eφ(y ,V ),

and the union is dense, since Eφ(y ,V ) is syndetic.
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Proof.
Now choose countable bases B and C for X and Y , respectively.

Then (x , y) has a dense orbit in X × Yt if, and only if,

t ∈
⋂

U∈B

⋂
V∈C

AU,V .

The intersection is the desired residual subset of R.

Lemma 17
Let t ∈ R. If the system X × Yt has a dense orbit then it is
minimal.

Proof.
Let (x , y) be a point with a dense orbit. To show that X × Yt is
minimal, fix

a nonempty, closed, invariant set M ⊆ X × Y .
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Proof.

By compactness of Y , the projection Pr : X × Y → X is closed.
Moreover, Pr : X × Yt → X is a homomorphism of dynamical
systems. Consequently, by minimality of X , M projects onto the
whole of X . Hence there is z ∈ Y with (x , z) ∈ M.
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Proof.

Now, Z (φ) acts transitively on Y , so ψ(z) = y for some ψ ∈ Z (φ).
If we consider ψ as a vertical homeomorphism on X × Y then it is
an automorphism of X × Yt .

Matúš Dirbák Product-minimal spaces



Proof.

Now, Z (φ) acts transitively on Y , so ψ(z) = y for some ψ ∈ Z (φ).

If we consider ψ as a vertical homeomorphism on X × Y then it is
an automorphism of X × Yt .

Matúš Dirbák Product-minimal spaces



Proof.

Now, Z (φ) acts transitively on Y , so ψ(z) = y for some ψ ∈ Z (φ).
If we consider ψ as a vertical homeomorphism on X × Y then it is
an automorphism of X × Yt .

Matúš Dirbák Product-minimal spaces



Proof.

Consequently, ψ(M) is a nonempty closed invariant set for X ×Yt .

Since (x , y) ∈ ψ(M) and (x , y) has dense orbit, ψ(M) = X × Y ,
whence M = X × Y . Thus, X × Yt is minimal.
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PM-spaces in examples of strange minimal spaces

Theorem 18
Let X be a DST-space and let Y be a product-minimal
path-connected space. Then

X × Y admits a minimal map,
(X × Y )2 admits no minimal maps.

Theorem 19

Let X be a DST-space and n ≥ 2 be an integer. Then
X × Tn admits a minimal homeomorphism as well as a
minimal non-invertible map,
(X × Tn)2 admits no minimal maps.
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(X × Tn)2 admits no minimal maps.
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(Product-)minimality of direct products — summary

(I) The product of minimal spaces may fail to be minimal.
If X is a DST-space then X is minimal but X × X is not.

(II) The product of product-minimal spaces is product-minimal.
This is a content of Proposition 1(3).

(III) The product of a minimal space and a product-minimal space
is minimal.
This is an immediate consequence of the definition of
product-minimality.

(IV) The product of a minimal space and a product-minimal space
may fail to be product-minimal.
If X is a DST-space then X is minimal, the torus T2 is
product-minimal, but X × T2 is not product-minimal as
mentioned in Theorem 19.
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Two more results on minimal direct products

In 1979, Glasner and Weiss described a very powerful method for
constructing minimal extensions of dynamical systems. One of
their general results has the following (immediate) corollary.

Theorem 20 (Glasner, Weiss, 1979)
Let X ,Y be compact minimal spaces and let X admit a minimal
homeomorphism isotopic to the identity. Then the product X × Y
is minimal.

Theorem 21
Let Y be a product-minimal space and X be a non-degenerate
compact metrizable space admitting a minimal homeomorphism
isotopic to the identity. Then X × Y is product-minimal. (The
same is true for the notion of homeo-product-minimality.)
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