On Hausdorff dimension of Julia sets of real Feigenbaum maps

Artem Dudko

The 9th Visegrad Conference

Dynamical Systems, Prague

June 16, 2021

Discrete dynamical system associated to a polynomial

Let
$$f(z) = a_0 z^d + a_1 z^{d-1} + \ldots + a_{d-1} z + a_d$$
 be a polynomial, $d \in \mathbb{N}, a_i \in \mathbb{C}, z \in \mathbb{C}$. For $n \in \mathbb{N}$ denote by $f^n(z) = f(f(\ldots(f(z))\ldots))$ (iterated n times).

Discrete dynamical system associated to a function f(z): given z_0 consider its orbit

$$O(z_0) = \{z_0, z_1 = f(z_0), z_2 = f(z_1), z_3 = f(z_2), \ldots\}, z_n = f^n(z).$$

Figure: Orbit of a point.

The Julia set: informal definition

An important question is how orbits depend on the initial parameter z_0 .

Natural dichotomy:

- regular behavior (slight change in the initial condition does not affect much the long-time behavior which can be therefore accurately predicted);
- chaotic behavior (arbitrary small variation of the initial condition may change unpredictably the long-time behavior).

Informally speaking, for a polynomial (or rational) function f(z) the set of parameters z_0 producing chaotic behavior is called the *Julia set* J_f . Regular parameters constitute the Fatou set F_f .

The Julia set: formal definition

Filled Julia set $K_f = \{z \in \mathbb{C} : \{f^n(z)\}_{n \in \mathbb{N}} \text{ is bounded}\}.$ Julia set $J_f = \partial K_f$.

Figure: The Basilica Julia set, $f(z) = z^2 - 1$.

Julia set of a polynomial f

Figure: A dendrite Julia set, $f(z) = z^2 + i$.

Julia set of a polynomial f

Figure: The cauliflower, $f(z) = z^2 + 0.25$.

Julia set of a polynomial f

Figure: A perturbation of the cauliflower, $f(z) = z^2 + 0.26 + 0.001i$.

Renormalization

A *quadratic-like map* is a ramified covering $f: U \to V$ of degree 2, where $U \subseteq V$ are topological disks in \mathbb{C} .

A quadratic-like map f is called *renormalizable with period* p if there exist domains $U' \subseteq U$ for which $f^p : U' \to V' = f^p(U')$ is a quadratic-like map.

The map $f^n|_{U'}$ is called a *pre-renormalization of* f; the map $\mathcal{R}_p f := \Lambda \circ f^p|_{U'} \circ \Lambda^{-1}$, where Λ is an appropriate rescaling of U', is the *renormalization of* f.

Feigenbaum maps

Definition

A Feigenbaum map is an infinitely renormalizable quadratic-like map with bounded combinatorics and a priori bounds.

Avila-Lyubich '06, '07, '15: there exist Feigenbaum polynomials f_{c_n} , $c_n \to -2$, such that $\dim_{\mathrm{H}}(\mathcal{J}_{c_n}) \to 1$. There exists Feigenbaum polynomials f_c with $\mathrm{area}(\mathcal{J}_c) > 0$.

Assume a quadratic-like map $f:U\to V$ has $0\in U$ as a critical point. We call f real if $f(\mathbb{R}\cap U)\subset \mathbb{R}$.

Open problems: Do there exist real Feigenbaum maps with positive area Julia sets (or at least of Hausdorff dimension 2)? Obtain bounds on the Hausdorff dimension of these Julia sets.

If f is renormalizable with period p we set $\Lambda(z) = z/\lambda$, $\lambda = f^p(0)$ so that $(\mathcal{R}_p(f))(0) = 1$.

Periodic points of renormalization

A quadratic-like map f is a periodic point of renormalization if

$$\mathcal{R}_p(f) = f$$
 for some p , equivalently $f(z) = \frac{1}{\lambda} f^p(\lambda z)$.

By Straigtening Theorem, every quadratic-like map is hybrid equivalent (conjugated conformally on and quasi-conformally outside the Julia set) to a unique quadratic map $f_c(z) = z^2 + c$. For a real periodic point of renormalization f the corresponding map is a Feigenbaum map of stationary combinatorics (the relative positions of the iterates of critical orbit does not change under renormalization).

Periodic points of renormalization

Given an infinitely renormalizable map $f_c(z)$ with stationary combinatorics of period n the sequence of renormalizations $\mathcal{R}_n^k(f_c)$ converges to a periodic point F of renormalization: $\mathcal{R}_n(F) = F$. Example 1: there is a unique period two infinitely renormalizable quadratic polynomical $f_{c_{\mathrm{Feig}}}(z) = z^2 + c_{\mathrm{Feig}}$, $c_{\mathrm{Feig}} \approx -1.401155189092$ (discovered by Feigenbaum-Coullet-Tresser). One has $R_2^k(f_{c_{\mathrm{Feig}}}) \to F_{\mathrm{Feig}}$, where F_{Feig} is the fixed point of period two renormalization (also called the Feigenbaum map).

The Feigenbaum map

Figure: The Julia set of $F_{
m Feig}$

Theorem (D.-Sutherland)

The Julia set of $F_{\rm Feig}$ has Hausdorff dimension less than two (and hence its Lebesgue measure is zero).

In the first part of this talk: generalization of our approach to real periodic points of Feigenbaum renormalization and some numerical results.

Example 2: $f_{c_{31}}$

Example 2: real period 3 infinitely renormalizable quadratic polynomial is $f_{c_3}(z)=z^2+c_3$ with $c_3\approx -1.78644026$. One has $\mathcal{R}_3^k(f_{c_3})\to F(z)\approx 1-1.87431z^2+0.09383z^4-0.00025z^6$, where $\mathcal{R}_3F=F$.

Figure: The Julia set of f_{c_3} .

Area and HD of quadratic Julia sets

Notations: $f_c(z) = z^2 + c$, $\mathcal{J}_c = \mathcal{J}_{f_c}$.

- Ruelle '82: $\dim_{\mathrm{H}}(\mathcal{J}_c)$ is real-analytic in c on hyperbolic components and outside of the Mandelbrot set.
- Shishikura '98: for a generic $c \in \partial \mathcal{M}$ one has $\dim_{\mathrm{H}}(\mathcal{J}_c) = 2$.
- McMullen '98: $\dim_{\mathrm{H}}(\mathcal{J}_c)$ is continuous on $(c_{\mathrm{Feig}}, \frac{1}{4}]$.
- McMullen '98, Jenkinson-Pollicott '02: effective algorithms for computing \dim_{H} of attractors of conformal expanding dynamical systems (e.g. hyperbolic Julia sets).
- Buff-Cheritat '12: there exist quadratic polynomials with positive area Julia sets a) having a Siegel fixed point, b) having a Cremer fixed point, c) infinitely satellite renormalizable.

Nice domains

Denote by f_n the *n*-th prerenormalization of f, by \mathcal{J}_n the Julia set of f_n and by $\mathcal{O}(f)$ the critical orbit of f.

Avila and Lyubich constructed domains $U^n \subset V^n$ (called *nice domains*) for which

- $f_n(U^n) = V^n$;
- $U^n \supset \mathcal{J}_n \cap \mathcal{O}(f)$;
- $V^{n+1} \subset U^n$:
- $f^k(\partial V^n) \cap V^n = \emptyset$ for all n, k;
- $A^n = V^n \setminus U^n$ is "far" from $\mathcal{O}(f)$;
- $\operatorname{area}(A^n) \simeq \operatorname{area}(U^n) \simeq \operatorname{diam}(U^n)^2 \simeq \operatorname{diam}(V^n)^2$.

Escaping and returning sets

For each $n \in \mathbb{N}$, let X_n be the set of points in U^0 that land in V^n under some iterate of f:

$$X_n = \{z \in U^0 : f^k(z) \in V^n \text{ for some } n \geqslant 0\},$$

and let Y_n be the set of points in A^n that never return to V^n under iterates of f:

$$Y_n = \{z \in A^n : f^k(z) \notin V^n \text{ for all } n \geqslant 1\}.$$

Introduce the quantities

$$\eta_n = \frac{\operatorname{area}(X_n)}{\operatorname{area}(U^0)}, \quad \xi_n = \frac{\operatorname{area}(Y_n)}{\operatorname{area}(A^n)}.$$

Avila-Lyubich trichotomy

Theorem (Avila-Lyubich)

Let f be a periodic point of renormalization ($\mathcal{R}^p f = f$ for some p). Then exactly one of the following is true:

- η_n converges to 0 exponentially fast, inf $\xi_n > 0$, and $\dim_H(\mathcal{J}_f) < 2$ (Lean case);
- $\eta_n \asymp \xi_n \asymp \frac{1}{n}$ and $\dim_{\mathrm{H}}(\mathcal{J}_f) = 2$ with $\mathrm{area}(\mathcal{J}_f) = 0$ (Balanced case);
- inf $\eta_n > 0$, ξ_n converges to 0 exponentially fast, and $\operatorname{area}(\mathcal{J}_f) > 0$ (Black Hole case).

The structure of real Feigenbaum periodic points

The Cvitanović-Feigenbaum equation:

$$\begin{cases} F(z) = \frac{1}{\lambda}F^{p}(\lambda z), \\ F(0) = 1, \\ F(z) = H(z^{2}), \end{cases}$$

with $H'(0) \neq 0$.

Theorem (McMullen)

The map F has a maximal analytic extension to $\hat{F}: \hat{W} \to \mathbb{C}$, where $\hat{W} \supset \mathbb{R}$ is open, simply connected and dense in \mathbb{C} . All critical points of \hat{F} are simple. The critical values of \hat{F} are contained in real axis. Moreover, \hat{F} is a ramified covering.

Using the above tile the plane by connected components of $\hat{F}^{-1}(\mathbb{H}_+)$.

Tiles.

We call *tiles* connected components of $\hat{F}^{-k}(\mathbb{H}_{\pm})$. Notice that tiles are nested: for any two tiles P,Q one has $P\subset Q$ or $Q\subset P$ or $P\cap Q=\varnothing$. Tiles also are scaling invariant: if P is a tile, then so is λP .

Figure: Some tiles for renormalization periodic point F of period 3 with k = 1 and k = 2.

Central tiles

Denote by $P_{\rm I}, P_{\rm II}, P_{\rm III}$ and $P_{\rm IV}$ the connected components of $\hat{F}^{-1}(\mathbb{H}_{\pm})$ containing 0 on the boundary. Set

$$W = \operatorname{Int}(\overline{P_{\mathsf{I}} \cup P_{\mathsf{II}} \cup P_{\mathsf{III}} \cup P_{\mathsf{IV}}}).$$

Then the restriction of \hat{F} onto W is a quadratic-like map with the image of the form $\mathbb{C}\setminus ((-\infty,\alpha]\cup [\beta,\infty))$. We set $F=\hat{F}|_W$. For $n\in\mathbb{N}$ and any set A let $A^{(n)}=\lambda^nA$. Notice that $F_n=F^{2^n}|_{W^{(n)}}$ the n-th pre-renormalization of F.

Central tiles

The (new) returning and escaping sets

$$\tilde{X}_n = \{ z \in W^{(1)} : F^k(z) \in W^{(n)} \text{ for some } k \}, \ \tilde{\eta}_n = \frac{\operatorname{area}(\tilde{X}_n)}{\operatorname{area}(W^{(1)})}.$$

$$\widetilde{Y}_n = \{z \in W^{(n)} : F^k(z) \notin W^{(n)} \text{ for all } k \in \mathbb{N}\}, \ \widetilde{\xi}_n = \frac{\operatorname{area}(Y_n)}{\operatorname{area}(W^{(n)})}.$$

Using Avila-Lyubich trichotomy we obtain:

Proposition

 $\dim_{\mathrm{H}}(\mathcal{J}_F) < 2$ if and only if $\widetilde{\eta}_n o 0$ exponentially fast.

Idea to prove $\tilde{\eta}_n \to 0$: construct recursive estimates of the form

$$\tilde{\eta}_{n+m} \leqslant C \tilde{\eta}_n \tilde{\eta}_m$$

show that $C\tilde{\eta}_n < 1$ for some n.

Koebe space

Set $c_{\rm cl} = \min\{|F^I(0)|: 1 \leqslant I < p\}/|\lambda|$. Observe that $c_{\rm cl} \leqslant |F(0)|/|\lambda| = 1/|\lambda|$. Introduce the set

$$\mathbb{C}_{\mathrm{cut}} = \mathbb{C} \setminus ((-\infty, c_{\mathrm{cl}}] \cup [c_{\mathrm{cl}}, \infty)).$$

By Koebe Distortion Theorem there exists a constant C such that for any univalent function φ on $\mathbb{C}_{\mathrm{cut}}$ one has:

$$\frac{|\varphi'(x)|}{|\varphi'(y)|} \leqslant C$$
, for all $x, y \in W$.

The main results

Theorem

For every $n, m \in \mathbb{N}$ one has

$$\tilde{\eta}_{n+m} \leqslant C^2 \tilde{\eta}_n \tilde{\eta}_{m+1} / \tilde{\xi}_n.$$

F of period p is uniquely determined by a permutation s on the set $\{0,1,\ldots,p-1\}$ such that $F^j(0) < F^k(0)$ for $0 \leqslant j,k \leqslant p-1$ if and only if s(j) < s(k). We obtain the following empirical results:

- For $F_{[1,0,2]}$: $\tilde{\eta}_3 < 0.0105$, $\xi_3 > 0.69$, $C^2 < 52$.
- For $F_{[1,0,3,2]}$: $\tilde{\eta}_3 < 0.01$, $\xi_3 > 0.3$, $C^2 < 26$.
- For $F_{[1,0,4,3,2]}$: $\tilde{\eta}_2 < 0.014$, $\xi_2 > 0.42$, $C^2 < 10.23$;
- For $F_{[2,0,4,3,1]}$: $\tilde{\eta}_2 < 0.014$, $\xi_2 > 0.43$, $C^2 < 22.2$;
- For $F_{[1,0,5,4,3,2]}$: $\tilde{\eta}_2 < 0.08$, $\xi_2 > 0.6$, $C^2 < 3.1$.

In each of the cases modulo numerical errors $C^2 \tilde{\eta}_n/\tilde{\xi}_n < 1$ and so $\dim_{\mathrm{H}}(J_F) < 2$.

Illustration to recursive estimates

McMullen's eigenvalue method: notations

The rest of the talk: application of the McMullen's algorithm to estimate from below the Hausdorff dimension of the Julia set of a real Feigenbaum quadratic map (ongoing joint work with Igors Gorbovickis).

Let $\mathcal F$ be a conformal dynamical system on $\mathbb R^n$ (i.e. a collection of conformal maps $f:U(f)\subset\mathbb R^n\to\mathbb R^n$). Let μ be an $\mathcal F$ -invariant density of dimension δ (i.e. $\mu(f(E))=\int\limits_E|f'(x)|^\delta d\mu$ whenever f|E is injective, $E\subset U(f)$ is a Borel set and $f\in \mathcal F$). Let $\mathcal P=\{(P_i,f_i)\}$ be a finite expanding Markov partition for $(\mathcal F,\mu)$. The refinement $R(\mathcal P)$ of $\mathcal P$ is the new Markov partition with pieces $P_{ii}=f_i^{-1}(P_i)\cap P_i$. Fix a sample point $x_i\in P_i$ for every $P_i\in \mathcal P$.

McMullen's eigenvalue method: the algorithm

- (1) For each i, j such that $\mu(f_i(P_i) \cap P_j) \neq 0$ let $y_{ij} \in P_i$ be such that $f_i(y_{ji}) = x_j$.
- (2) Compute the transition matrix with the entries $T_{ij} = |f'_i(y_{ij})|^{-1}$ whenever $\mu(f_i(P_i) \cap P_i) \neq \emptyset$, and $T_{ii} = 0$ otherwise.
- (3) Find $\alpha = \alpha(\mathcal{P}, \{x_i\})$ such that the spectral radius $\rho(T^{\delta}) = 1$, where T^{δ} means the matrix with the entries T^{δ}_{ij} .

Theorem (McMullen)

With the above conditions one has:

$$\alpha(R^n(\mathcal{P}) \to \delta$$
 exponentially fast.

Hausdorff dimension of hyperbolic Julia sets

Theorem (McMullen)

For a hyperbolic polynomial f(z) (i.e. expanding on its Julia set) there exists a unique invariant density μ of dimension $\delta = \dim_{\mathbf{H}}(J_f)$.

McMullen also showed:

One can define a partition \mathcal{P} of a Julia set of a hyperbolic map f using external rays.

The eigenvalue algorithm applied to \mathcal{P} computes $\dim_{\mathbb{H}}(J_f)$.

Hausdorff dimension of real Feigenbaum Julia sets

Let $f_c(z)=z^2+c, c\in\mathbb{R}$, be a Feigenbaum map (e.g. has periodic combinatorics). Let $P_1=\{z: \operatorname{Im} z>0, |z|<2\}$, $P_2=\{z: \operatorname{Im} z<0, |z|<2\}$ and $\mathcal{P}=(P_1,P_2)$. Denote by $R^n(\mathcal{P})$ the collection of connected components of $f^{-n}(P_{1/2})$. Given $R^n(\mathcal{P})=\{P_i^{(n)}\}$ introduce the matrix $T^{(n)}$ with entries

$$T_{ij}^{(n)} = (\sup\{|f_c'(y)| : y \in P_i^{(n)}, f_c(y) \in P_j^{(n)}\})^{-1},$$

if $f_c(P_i^{(n)}) \cap P_j^{(n)} \neq \emptyset$, and $T_{ij}^{(n)} = 0$ otherwise. Let α_n be such that $\rho((T^{(n)})_n^{\alpha}) = 1$.

Proposition (Dudko-Gorbovickis)

For each n one has $\alpha_n \leq \dim_{\mathrm{H}}(J_f)$.

Empiric estimates based on the above proposition suggest that the Hausdorff dimension of the Julia set of $f_{c_{\text{Feig}}}$ is at least 1.41.

Other questions

- Given a real Fibonacci map $\mathrm{Fib}_d(z) = z^d + c_{\mathrm{Fib}}$ for which d it has a wild attractor? (Bruin-Keller-Nowicki-van Strien \Rightarrow a wild attractor for sufficiently large d).
- Is there d > 2 such that Fib_d has the Julia set of positive area?
- Let F_d(z) be the period 2 fixed point with critical point of degree d > 2. Is there d with dim_H(J_{Fd}) = 2 or area(J_{Fd}) > 0? (Levin-Swiatek ⇒ dim_H(J_{Fd}) → 2)
- Can one define appropriate tiling of the plane for complex periodic points of Feigenbaum renormalization?
- Construct sufficiently simple examples of Feigenbaum Julia sets of positive measure.
- Construct two-dimensional polynomial maps with Julia sets of positive measure.

Thank you!

This work was supported by the Polish National Science Centre grant 2016/23/P/ST1/04088 within the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No. 665778.

