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Discrete dynamical system associated to a polynomial

Let f (z) = a0z
d + a1z

d−1 + . . .+ ad−1z + ad be a polynomial,
d ∈ N, ai ∈ C, z ∈ C. For n ∈ N denote by
f n(z) = f (f (. . . (f (z)) . . .)) (iterated n times).

Discrete dynamical system associated to a function f (z): given z0

consider its orbit
O(z0) = {z0, z1 = f (z0), z2 = f (z1), z3 = f (z2), . . .}, zn = f n(z).
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Figure: Orbit of a point.
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The Julia set: informal definition

An important question is how orbits depend on the initial
parameter z0.

Natural dichotomy:
• regular behavior (slight change in the initial condition does not
affect much the long-time behavior which can be therefore
accurately predicted);
• chaotic behavior (arbitrary small variation of the initial condition
may change unpredictably the long-time behavior).

Informally speaking, for a polynomial (or rational) function f (z)
the set of parameters z0 producing chaotic behavior is called the
Julia set Jf . Regular parameters constitute the Fatou set Ff .
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The Julia set: formal definition

Filled Julia set Kf = {z ∈ C : {f n(z)}n∈N is bounded}.
Julia set Jf = ∂Kf .

Figure: The Basilica Julia set, f (z) = z2 − 1.
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Julia set of a polynomial f

Figure: A dendrite Julia set, f (z) = z2 + i .
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Julia set of a polynomial f

Figure: The cauliflower, f (z) = z2 + 0.25.
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Julia set of a polynomial f

Figure: A perturbation of the cauliflower, f (z) = z2 + 0.26 + 0.001i .

Artem Dudko On Hausdorff dimension of Julia sets of real Feigenbaum maps



Renormalization

A quadratic-like map is a ramified covering f : U → V of degree 2,
where U b V are topological disks in C.
A quadratic-like map f is called renormalizable with period p if
there exist domains U ′ b U for which f p : U ′ → V ′ = f p(U ′) is a
quadratic-like map.

'

'

'
'

The map f n|U′ is called a pre-renormalization of f ; the map
Rpf := Λ ◦ f p|U′ ◦ Λ−1, where Λ is an appropriate rescaling of U ′,
is the renormalization of f .
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Feigenbaum maps

Definition

A Feigenbaum map is an infinitely renormalizable quadratic-like
map with bounded combinatorics and a priori bounds.

Avila-Lyubich ’06, ’07, ’15: there exist Feigenbaum polynomials
fcn , cn → −2, such that dimH(Jcn)→ 1. There exists Feigenbaum
polynomials fc with area(Jc) > 0.
Assume a quadratic-like map f : U → V has 0 ∈ U as a critical
point. We call f real if f (R ∩ U) ⊂ R.
Open problems: Do there exist real Feigenbaum maps with positive
area Julia sets (or at least of Hausdorff dimension 2)? Obtain
bounds on the Hausdorff dimension of these Julia sets.

If f is renormalizable with period p we set Λ(z) = z/λ, λ = f p(0)
so that (Rp(f ))(0) = 1.
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Periodic points of renormalization

A quadratic-like map f is a periodic point of renormalization if

Rp(f ) = f for some p, equivalently f (z) = 1
λ f

p(λz).

By Straigtening Theorem, every quadratic-like map is hybrid
equivalent (conjugated conformally on and quasi-conformally
outside the Julia set) to a unique quadratic map fc(z) = z2 + c .
For a real periodic point of renormalization f the corresponding
map is a Feigenbaum map of stationary combinatorics (the relative
positions of the iterates of critical orbit does not change under
renormalization).
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Periodic points of renormalization

Given an infinitely renormalizable map fc(z) with stationary
combinatorics of period n the sequence of renormalizations Rk

n(fc)
converges to a periodic point F of renormalization: Rn(F ) = F .
Example 1: there is a unique period two infinitely renormalizable
quadratic polynomical fcFeig(z) = z2 + cFeig,
cFeig ≈ −1.401155189092 (discovered by
Feigenbaum-Coullet-Tresser). One has Rk

2 (fcFeig)→ FFeig, where
FFeig is the fixed point of period two renormalization (also called
the Feigenbaum map).
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The Feigenbaum map

Figure: The Julia set of FFeig

Theorem (D.-Sutherland)

The Julia set of FFeig has Hausdorff dimension less than two (and
hence its Lebesgue measure is zero).

In the first part of this talk: generalization of our approach to real
periodic points of Feigenbaum renormalization and some numerical
results.
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Example 2: fc3

Example 2: real period 3 infinitely renormalizable quadratic
polynomial is fc3(z) = z2 + c3 with c3 ≈ −1.78644026. One has
Rk

3(fc3)→ F (z) ≈ 1− 1.87431z2 + 0.09383z4 − 0.00025z6, where
R3F = F .

Figure: The Julia set of fc3 .
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Area and HD of quadratic Julia sets

Notations: fc(z) = z2 + c , Jc = Jfc .

Ruelle ’82: dimH(Jc) is real-analytic in c on hyperbolic
components and outside of the Mandelbrot set.

Shishikura ’98: for a generic c ∈ ∂M one has dimH(Jc) = 2.

McMullen ’98: dimH(Jc) is continuous on (cFeig,
1
4 ].

McMullen ’98, Jenkinson-Pollicott ’02: effective algorithms for
computing dimH of attractors of conformal expanding
dynamical systems (e.g. hyperbolic Julia sets).

Buff-Cheritat ’12: there exist quadratic polynomials with
positive area Julia sets a) having a Siegel fixed point, b)
having a Cremer fixed point, c) infinitely satellite
renormalizable.
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Nice domains

Denote by fn the n-th prerenormalization of f , by Jn the Julia set
of fn and by O(f ) the critical orbit of f .

Avila and Lyubich constructed domains Un ⊂ V n (called nice
domains) for which

fn(Un) = V n;

Un ⊃ Jn ∩ O(f );

V n+1 ⊂ Un;

f k(∂V n) ∩ V n = ∅ for all n, k ;

An = V n \ Un is “far” from O(f );

area(An) � area(Un) � diam(Un)2 � diam(V n)2.
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Escaping and returning sets

For each n ∈ N, let Xn be the set of points in U0 that land in V n

under some iterate of f :

Xn = {z ∈ U0 : f k(z) ∈ V n for some n > 0},

and let Yn be the set of points in An that never return to V n under
iterates of f :

Yn = {z ∈ An : f k(z) /∈ V n for all n > 1}.

Introduce the quantities

ηn =
area(Xn)

area(U0)
, ξn =

area(Yn)

area(An)
.
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Avila-Lyubich trichotomy

Theorem (Avila-Lyubich)

Let f be a periodic point of renormalization ( Rpf = f for some
p). Then exactly one of the following is true:

ηn converges to 0 exponentially fast, inf ξn > 0, and
dimH(Jf ) < 2 (Lean case);

ηn � ξn � 1
n and dimH(Jf ) = 2 with area(Jf ) = 0 (Balanced

case);

inf ηn > 0, ξn converges to 0 exponentially fast, and
area(Jf ) > 0 (Black Hole case).
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The structure of real Feigenbaum periodic points

The Cvitanović-Feigenbaum equation:
F (z) = 1

λF
p(λz),

F (0) = 1,
F (z) = H(z2),

with H ′(0) 6= 0.

Theorem (McMullen)

The map F has a maximal analytic extension to F̂ : Ŵ → C,
where Ŵ ⊃ R is open, simply connected and dense in C.
All critical points of F̂ are simple. The critical values of F̂ are
contained in real axis. Moreover, F̂ is a ramified covering.

Using the above tile the plane by connected components of
F̂−1(H±).
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Tiles.

We call tiles connected components of F̂−k(H±). Notice that tiles
are nested: for any two tiles P,Q one has P ⊂ Q or Q ⊂ P or
P ∩ Q = ∅. Tiles also are scaling invariant: if P is a tile, then so
is λP.
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Figure: Some tiles for renormalization periodic point F of period 3 with
k = 1 and k = 2.
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Central tiles

Denote by PI,PII,PIII and PIV the connected components of
F̂−1(H±) containing 0 on the boundary. Set

W = Int(PI ∪ PII ∪ PIII ∪ PIV).

Then the restriction of F̂ onto W is a quadratic-like map with the
image of the form C \ ((−∞, α] ∪ [β,∞)). We set F = F̂ |W . For
n ∈ N and any set A let A(n) = λnA. Notice that Fn = F 2n |W (n)

the n-th pre-renormalization of F .
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Central tiles

5.46...

3.46...
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The (new) returning and escaping sets

X̃n = {z ∈W (1) : F k(z) ∈W (n) for some k}, η̃n =
area(X̃n)

area(W (1))
.

Ỹn = {z ∈W (n) : F k(z) /∈W (n) for all k ∈ N}, ξ̃n =
area(Ỹn)

area(W (n))
.

Using Avila-Lyubich trichotomy we obtain:

Proposition

dimH(JF ) < 2 if and only if η̃n → 0 exponentially fast.

Idea to prove η̃n → 0: construct recursive estimates of the form

η̃n+m 6 C η̃nη̃m,

show that C η̃n < 1 for some n.
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Koebe space

Set ccl = min{|F l(0)| : 1 6 l < p}/|λ|. Observe that
ccl 6 |F (0)|/|λ| = 1/|λ|. Introduce the set

Ccut = C \ ((−∞, ccl] ∪ [ccl,∞)).

By Koebe Distortion Theorem there exists a constant C such that
for any univalent function ϕ on Ccut one has:

|ϕ′(x)|
|ϕ′(y)|

6 C , for all x , y ∈W .
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The main results

Theorem

For every n,m ∈ N one has

η̃n+m 6 C 2η̃nη̃m+1/ξ̃n.

F of period p is uniquely determined by a permutation s on the set
{0, 1, . . . , p − 1} such that F j(0) < F k(0) for 0 6 j , k 6 p − 1 if
and only if s(j) < s(k). We obtain the following empirical results:

For F[1,0,2]: η̃3 < 0.0105, ξ3 > 0.69, C 2 < 52.

For F[1,0,3,2]: η̃3 < 0.01, ξ3 > 0.3, C 2 < 26.

For F[1,0,4,3,2]: η̃2 < 0.014, ξ2 > 0.42, C 2 < 10.23;

For F[2,0,4,3,1]: η̃2 < 0.014, ξ2 > 0.43, C 2 < 22.2;

For F[1,0,5,4,3,2]: η̃2 < 0.08, ξ2 > 0.6, C 2 < 3.1.

In each of the cases modulo numerical errors C 2η̃n/ξ̃n < 1 and so
dimH(JF ) < 2.
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Illustration to recursive estimates

F
k

Xn

Xn+m

0

P
(n)

I

Xm

Yn

(n)

Artem Dudko On Hausdorff dimension of Julia sets of real Feigenbaum maps



McMullen’s eigenvalue method: notations

The rest of the talk: application of the McMullen’s algorithm to
estimate from below the Hausdorff dimension of the Julia set of a
real Feigenbaum quadratic map (ongoing joint work with Igors
Gorbovickis).

Let F be a conformal dynamical system on Rn (i.e. a collection of
conformal maps f : U(f ) ⊂ Rn → Rn). Let µ be an F-invariant
density of dimension δ (i.e. µ(f (E )) =

∫
E

|f ′(x)|δdµ whenever f |E

is injective, E ⊂ U(f ) is a Borel set and f ∈ F). Let
P = {(Pi , fi )} be a finite expanding Markov partition for (F , µ).
The refinement R(P) of P is the new Markov partition with pieces
Pij = f −1

i (Pj) ∩ Pi . Fix a sample point xi ∈ Pi for every Pi ∈ P.
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McMullen’s eigenvalue method: the algorithm

(1) For each i , j such that µ(fi (Pi ) ∩ Pj) 6= 0 let yij ∈ Pi be such
that fi (yji ) = xj .
(2) Compute the transition matrix with the entries Tij = |f ′i (yij)|−1

whenever µ(fi (Pi ) ∩ Pj) 6= ∅, and Tij = 0 otherwise.
(3) Find α = α(P, {xi}) such that the spectral radius ρ(T δ) = 1,
where T δ means the matrix with the entries T δ

ij .

Theorem (McMullen)

With the above conditions one has:

α(Rn(P)→ δ exponentially fast.
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Hausdorff dimension of hyperbolic Julia sets

Theorem (McMullen)

For a hyperbolic polynomial f (z) (i.e. expanding on its Julia set)
there exists a unique invariant density µ of dimension
δ = dimH(Jf ).

McMullen also showed:
One can define a partition P of a Julia set of a hyperbolic map f
using external rays.
The eigenvalue algorithm applied to P computes dimH(Jf ).
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Hausdorff dimension of real Feigenbaum Julia sets

Let fc(z) = z2 + c , c ∈ R, be a Feigenbaum map (e.g. has periodic
combinatorics). Let P1 = {z : Im z > 0, |z | < 2},
P2 = {z : Im z < 0, |z | < 2} and P = (P1,P2). Denote by Rn(P)
the collection of connected components of f −n(P1/2). Given

Rn(P) = {P(n)
i } introduce the matrix T (n) with entries

T
(n)
ij = (sup{|f ′c (y)| : y ∈ P

(n)
i , fc(y) ∈ P

(n)
j })

−1,

if fc(P
(n)
i ) ∩ P

(n)
j 6= ∅, and T

(n)
ij = 0 otherwise. Let αn be such

that ρ((T (n))αn ) = 1.

Proposition (Dudko-Gorbovickis)

For each n one has αn 6 dimH(Jf ).

Empiric estimates based on the above proposition suggest that the
Hausdorff dimension of the Julia set of fcFeig is at least 1.41.
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Other questions

Given a real Fibonacci map Fibd(z) = zd + cFib for which d
it has a wild attractor? (Bruin-Keller-Nowicki-van Strien ⇒ a
wild attractor for sufficiently large d).

Is there d > 2 such that Fibd has the Julia set of positive
area?

Let Fd(z) be the period 2 fixed point with critical point of
degree d > 2. Is there d with dimH(JFd

) = 2 or
area(JFd

) > 0? (Levin-Swiatek ⇒ dimH(JFd
)→ 2)

Can one define appropriate tiling of the plane for complex
periodic points of Feigenbaum renormalization?

Construct sufficiently simple examples of Feigenbaum Julia
sets of positive measure.

Construct two-dimensional polynomial maps with Julia sets of
positive measure.
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Thank you!
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