On Hausdorff dimension of Julia sets of real Feigenbaum maps

Artem Dudko

The 9th Visegrad Conference
Dynamical Systems, Prague
June 16, 2021

Discrete dynamical system associated to a polynomial

Let $f(z)=a_{0} z^{d}+a_{1} z^{d-1}+\ldots+a_{d-1} z+a_{d}$ be a polynomial, $d \in \mathbb{N}, a_{i} \in \mathbb{C}, z \in \mathbb{C}$. For $n \in \mathbb{N}$ denote by $f^{n}(z)=f(f(\ldots(f(z)) \ldots))$ (iterated n times).

Discrete dynamical system associated to a function $f(z)$: given z_{0} consider its orbit

$$
O\left(z_{0}\right)=\left\{z_{0}, z_{1}=f\left(z_{0}\right), z_{2}=f\left(z_{1}\right), z_{3}=f\left(z_{2}\right), \ldots\right\}, z_{n}=f^{n}(z)
$$

Figure: Orbit of a point.

An important question is how orbits depend on the initial parameter z_{0}.

Natural dichotomy:

- regular behavior (slight change in the initial condition does not affect much the long-time behavior which can be therefore accurately predicted);
- chaotic behavior (arbitrary small variation of the initial condition may change unpredictably the long-time behavior).

Informally speaking, for a polynomial (or rational) function $f(z)$ the set of parameters z_{0} producing chaotic behavior is called the Julia set J_{f}. Regular parameters constitute the Fatou set F_{f}.

Filled Julia set $K_{f}=\left\{z \in \mathbb{C}:\left\{f^{n}(z)\right\}_{n \in \mathbb{N}}\right.$ is bounded $\}$. Julia set $J_{f}=\partial K_{f}$.

Figure: The Basilica Julia set, $f(z)=z^{2}-1$.

Julia set of a polynomial f

Figure: A dendrite Julia set, $f(z)=z^{2}+i$.

Julia set of a polynomial f

Figure: The cauliflower, $f(z)=z^{2}+0.25$.

Julia set of a polynomial f

Figure: A perturbation of the cauliflower, $f(z)=z^{2}+0.26+0.001 i$.

Renormalization

A quadratic-like map is a ramified covering $f: U \rightarrow V$ of degree 2 , where $U \Subset V$ are topological disks in \mathbb{C}.
A quadratic-like map f is called renormalizable with period p if there exist domains $U^{\prime} \Subset U$ for which $f^{p}: U^{\prime} \rightarrow V^{\prime}=f^{p}\left(U^{\prime}\right)$ is a quadratic-like map.

The map $\left.f^{n}\right|_{U^{\prime}}$ is called a pre-renormalization of f; the map $\mathcal{R}_{p} f:=\left.\Lambda \circ f^{p}\right|_{U^{\prime}} \circ \Lambda^{-1}$, where Λ is an appropriate rescaling of U^{\prime}, is the renormalization of f.

Definition

A Feigenbaum map is an infinitely renormalizable quadratic-like map with bounded combinatorics and a priori bounds.

Avila-Lyubich '06, '07, '15: there exist Feigenbaum polynomials $f_{c_{n}}, c_{n} \rightarrow-2$, such that $\operatorname{dim}_{H}\left(\mathcal{J}_{c_{n}}\right) \rightarrow 1$. There exists Feigenbaum polynomials f_{c} with area $\left(\mathcal{J}_{c}\right)>0$.
Assume a quadratic-like map $f: U \rightarrow V$ has $0 \in U$ as a critical point. We call f real if $f(\mathbb{R} \cap U) \subset \mathbb{R}$.
Open problems: Do there exist real Feigenbaum maps with positive area Julia sets (or at least of Hausdorff dimension 2)? Obtain bounds on the Hausdorff dimension of these Julia sets.

If f is renormalizable with period p we set $\Lambda(z)=z / \lambda, \lambda=f^{p}(0)$ so that $\left(\mathcal{R}_{p}(f)\right)(0)=1$.

Periodic points of renormalization

A quadratic-like map f is a periodic point of renormalization if

$$
\mathcal{R}_{p}(f)=f \text { for some } p, \text { equivalently } f(z)=\frac{1}{\lambda} f^{p}(\lambda z)
$$

By Straigtening Theorem, every quadratic-like map is hybrid equivalent (conjugated conformally on and quasi-conformally outside the Julia set) to a unique quadratic map $f_{c}(z)=z^{2}+c$. For a real periodic point of renormalization f the corresponding map is a Feigenbaum map of stationary combinatorics (the relative positions of the iterates of critical orbit does not change under renormalization).

Periodic points of renormalization

Given an infinitely renormalizable map $f_{c}(z)$ with stationary combinatorics of period n the sequence of renormalizations $\mathcal{R}_{n}^{k}\left(f_{c}\right)$ converges to a periodic point F of renormalization: $\mathcal{R}_{n}(F)=F$. Example 1: there is a unique period two infinitely renormalizable quadratic polynomical $f_{\text {Ceig }}(z)=z^{2}+c_{\text {Feig }}$, $c_{\text {Feig }} \approx-1.401155189092$ (discovered by Feigenbaum-Coullet-Tresser $)$. One has $R_{2}^{k}\left(f_{\text {Ceig }}\right) \rightarrow F_{\text {Feig }}$, where $F_{\text {Feig }}$ is the fixed point of period two renormalization (also called the Feigenbaum map).

The Feigenbaum map

Figure: The Julia set of $F_{\text {Feig }}$

Theorem (D.-Sutherland)

The Julia set of $F_{\text {Feig }}$ has Hausdorff dimension less than two (and hence its Lebesgue measure is zero).

In the first part of this talk: generalization of our approach to real periodic points of Feigenbaum renormalization and some numerical results.

Example 2: $f_{c_{3}}$

Example 2: real period 3 infinitely renormalizable quadratic polynomial is $f_{c_{3}}(z)=z^{2}+c_{3}$ with $c_{3} \approx-1.78644026$. One has $\mathcal{R}_{3}^{k}\left(f_{c_{3}}\right) \rightarrow F(z) \approx 1-1.87431 z^{2}+0.09383 z^{4}-0.00025 z^{6}$, where $\mathcal{R}_{3} F=F$.

Figure: The Julia set of $f_{c_{3}}$.

Area and HD of quadratic Julia sets

Notations: $f_{c}(z)=z^{2}+c, \mathcal{J}_{c}=\mathcal{J}_{f_{c}}$.

- Ruelle '82: $\operatorname{dim}_{H}\left(\mathcal{J}_{c}\right)$ is real-analytic in c on hyperbolic components and outside of the Mandelbrot set.
- Shishikura '98: for a generic $c \in \partial \mathcal{M}$ one has $\operatorname{dim}_{H}\left(\mathcal{J}_{c}\right)=2$.
- McMullen '98: $\operatorname{dim}_{H}\left(\mathcal{J}_{c}\right)$ is continuous on ($c_{\text {Feig }}, \frac{1}{4}$].
- McMullen '98, Jenkinson-Pollicott '02: effective algorithms for computing dim_{H} of attractors of conformal expanding dynamical systems (e.g. hyperbolic Julia sets).
- Buff-Cheritat '12: there exist quadratic polynomials with positive area Julia sets a) having a Siegel fixed point, b) having a Cremer fixed point, c) infinitely satellite renormalizable.

Denote by f_{n} the n-th prerenormalization of f, by \mathcal{J}_{n} the Julia set of f_{n} and by $\mathcal{O}(f)$ the critical orbit of f.

Avila and Lyubich constructed domains $U^{n} \subset V^{n}$ (called nice domains) for which

- $f_{n}\left(U^{n}\right)=V^{n}$;
- $U^{n} \supset \mathcal{J}_{n} \cap \mathcal{O}(f)$;
- $V^{n+1} \subset U^{n}$;
- $f^{k}\left(\partial V^{n}\right) \cap V^{n}=\emptyset$ for all n, k;
- $A^{n}=V^{n} \backslash U^{n}$ is "far" from $\mathcal{O}(f)$;
- $\operatorname{area}\left(A^{n}\right) \asymp \operatorname{area}\left(U^{n}\right) \asymp \operatorname{diam}\left(U^{n}\right)^{2} \asymp \operatorname{diam}\left(V^{n}\right)^{2}$.

Escaping and returning sets

For each $n \in \mathbb{N}$, let X_{n} be the set of points in U^{0} that land in V^{n} under some iterate of f :

$$
X_{n}=\left\{z \in U^{0}: f^{k}(z) \in V^{n} \text { for some } n \geqslant 0\right\}
$$

and let Y_{n} be the set of points in A^{n} that never return to V^{n} under iterates of f :

$$
Y_{n}=\left\{z \in A^{n}: f^{k}(z) \notin V^{n} \text { for all } n \geqslant 1\right\}
$$

Introduce the quantities

$$
\eta_{n}=\frac{\operatorname{area}\left(X_{n}\right)}{\operatorname{area}\left(U^{0}\right)}, \quad \xi_{n}=\frac{\operatorname{area}\left(Y_{n}\right)}{\operatorname{area}\left(A^{n}\right)}
$$

Avila-Lyubich trichotomy

Theorem (Avila-Lyubich)

Let f be a periodic point of renormalization ($\mathcal{R}^{p} f=f$ for some
$p)$. Then exactly one of the following is true:

- η_{n} converges to 0 exponentially fast, $\inf \xi_{n}>0$, and $\operatorname{dim}_{\mathrm{H}}\left(\mathcal{J}_{f}\right)<2$ (Lean case);
- $\eta_{n} \asymp \xi_{n} \asymp \frac{1}{n}$ and $\operatorname{dim}_{\mathrm{H}}\left(\mathcal{J}_{f}\right)=2$ with area $\left(\mathcal{J}_{f}\right)=0$ (Balanced case);
- inf $\eta_{n}>0, \xi_{n}$ converges to 0 exponentially fast, and $\operatorname{area}\left(\mathcal{J}_{f}\right)>0$ (Black Hole case).

The structure of real Feigenbaum periodic points

The Cvitanović-Feigenbaum equation:

$$
\left\{\begin{array}{l}
F(z)=\frac{1}{\lambda} F^{p}(\lambda z), \\
F(0)=1, \\
F(z)=H\left(z^{2}\right),
\end{array}\right.
$$

with $H^{\prime}(0) \neq 0$.

Theorem (McMullen)

The map F has a maximal analytic extension to $\hat{F}: \hat{W} \rightarrow \mathbb{C}$, where $\hat{W} \supset \mathbb{R}$ is open, simply connected and dense in \mathbb{C}. All critical points of \hat{F} are simple. The critical values of \hat{F} are contained in real axis. Moreover, \hat{F} is a ramified covering.

Using the above tile the plane by connected components of $\hat{F}^{-1}\left(\mathbb{H}_{ \pm}\right)$.

We call tiles connected components of $\hat{F}^{-k}\left(\mathbb{H}_{ \pm}\right)$. Notice that tiles are nested: for any two tiles P, Q one has $P \subset Q$ or $Q \subset P$ or $P \cap Q=\varnothing$. Tiles also are scaling invariant: if P is a tile, then so is λP.

Figure: Some tiles for renormalization periodic point F of period 3 with $k=1$ and $k=2$.

Central tiles

Denote by $P_{\mathrm{I}}, P_{\mathrm{II}}, P_{\mathrm{III}}$ and P_{IV} the connected components of $\hat{F}^{-1}\left(\mathbb{H}_{ \pm}\right)$containing 0 on the boundary. Set

$$
W=\operatorname{lnt}\left(\overline{P_{\mathrm{I}} \cup P_{\mathrm{II}} \cup P_{\mathrm{III}} \cup P_{\mathrm{IV}}}\right)
$$

Then the restriction of \hat{F} onto W is a quadratic-like map with the image of the form $\mathbb{C} \backslash((-\infty, \alpha] \cup[\beta, \infty))$. We set $F=\left.\hat{F}\right|_{w}$. For $n \in \mathbb{N}$ and any set A let $A^{(n)}=\lambda^{n} A$. Notice that $F_{n}=\left.F^{2^{n}}\right|_{W^{(n)}}$ the n-th pre-renormalization of F.

Central tiles

The (new) returning and escaping sets

$$
\tilde{X}_{n}=\left\{z \in W^{(1)}: F^{k}(z) \in W^{(n)} \text { for some } k\right\}, \tilde{\eta}_{n}=\frac{\operatorname{area}\left(\tilde{X}_{n}\right)}{\operatorname{area}\left(W^{(1)}\right)} .
$$

$$
\widetilde{Y}_{n}=\left\{z \in W^{(n)}: F^{k}(z) \notin W^{(n)} \text { for all } k \in \mathbb{N}\right\}, \tilde{\xi}_{n}=\frac{\operatorname{area}\left(\tilde{Y}_{n}\right)}{\operatorname{area}\left(W^{(n)}\right)} .
$$

Using Avila-Lyubich trichotomy we obtain:

Proposition

$\operatorname{dim}_{H}\left(\mathcal{J}_{F}\right)<2$ if and only if $\tilde{\eta}_{n} \rightarrow 0$ exponentially fast.
Idea to prove $\tilde{\eta}_{n} \rightarrow 0$: construct recursive estimates of the form

$$
\tilde{\eta}_{n+m} \leqslant C \tilde{\eta}_{n} \tilde{\eta}_{m},
$$

show that $C \tilde{\eta}_{n}<1$ for some n.

Koebe space

Set $c_{\mathrm{cl}}=\min \left\{\left|F^{\prime}(0)\right|: 1 \leqslant I<p\right\} /|\lambda|$. Observe that $c_{\mathrm{cl}} \leqslant|F(0)| /|\lambda|=1 /|\lambda|$. Introduce the set

$$
\mathbb{C}_{\mathrm{cut}}=\mathbb{C} \backslash\left(\left(-\infty, c_{\mathrm{cl}}\right] \cup\left[c_{\mathrm{cl}}, \infty\right)\right) .
$$

By Koebe Distortion Theorem there exists a constant C such that for any univalent function φ on $\mathbb{C}_{\text {cut }}$ one has:

$$
\frac{\left|\varphi^{\prime}(x)\right|}{\left|\varphi^{\prime}(y)\right|} \leqslant C, \text { for all } x, y \in W \text {. }
$$

The main results

Theorem

For every $n, m \in \mathbb{N}$ one has

$$
\tilde{\eta}_{n+m} \leqslant C^{2} \tilde{\eta}_{n} \tilde{\eta}_{m+1} / \tilde{\xi}_{n} .
$$

F of period p is uniquely determined by a permutation s on the set $\{0,1, \ldots, p-1\}$ such that $F^{j}(0)<F^{k}(0)$ for $0 \leqslant j, k \leqslant p-1$ if and only if $s(j)<s(k)$. We obtain the following empirical results:

- For $F_{[1,0,2]}: \tilde{\eta}_{3}<0.0105, \xi_{3}>0.69, C^{2}<52$.
- For $F_{[1,0,3,2]}: \tilde{\eta}_{3}<0.01, \xi_{3}>0.3, C^{2}<26$.
- For $F_{[1,0,4,3,2]}: \tilde{\eta}_{2}<0.014, \xi_{2}>0.42, C^{2}<10.23$;
- For $F_{[2,0,4,3,1]}: \tilde{\eta}_{2}<0.014, \xi_{2}>0.43, C^{2}<22.2$;
- For $F_{[1,0,5,4,3,2]}: \tilde{\eta}_{2}<0.08, \xi_{2}>0.6, C^{2}<3.1$.

In each of the cases modulo numerical errors $C^{2} \tilde{\eta}_{n} / \tilde{\xi}_{n}<1$ and so $\operatorname{dim}_{H}\left(J_{F}\right)<2$.

Illustration to recursive estimates

McMullen's eigenvalue method: notations

The rest of the talk: application of the McMullen's algorithm to estimate from below the Hausdorff dimension of the Julia set of a real Feigenbaum quadratic map (ongoing joint work with Igors Gorbovickis).

Let \mathcal{F} be a conformal dynamical system on \mathbb{R}^{n} (i.e. a collection of conformal maps $\left.f: U(f) \subset \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}\right)$. Let μ be an \mathcal{F}-invariant density of dimension δ (i.e. $\mu(f(E))=\int_{E}\left|f^{\prime}(x)\right|^{\delta} d \mu$ whenever $f \mid E$
is injective, $E \subset U(f)$ is a Borel set and $f \in \mathcal{F})$. Let
$\mathcal{P}=\left\{\left(P_{i}, f_{i}\right)\right\}$ be a finite expanding Markov partition for (\mathcal{F}, μ).
The refinement $R(\mathcal{P})$ of \mathcal{P} is the new Markov partition with pieces $P_{i j}=f_{i}^{-1}\left(P_{j}\right) \cap P_{i}$. Fix a sample point $x_{i} \in P_{i}$ for every $P_{i} \in \mathcal{P}$.

McMullen's eigenvalue method: the algorithm

(1) For each i, j such that $\mu\left(f_{i}\left(P_{i}\right) \cap P_{j}\right) \neq 0$ let $y_{i j} \in P_{i}$ be such that $f_{i}\left(y_{j i}\right)=x_{j}$.
(2) Compute the transition matrix with the entries $T_{i j}=\left|f_{i}^{\prime}\left(y_{i j}\right)\right|^{-1}$ whenever $\mu\left(f_{i}\left(P_{i}\right) \cap P_{j}\right) \neq \varnothing$, and $T_{i j}=0$ otherwise.
(3) Find $\alpha=\alpha\left(\mathcal{P},\left\{x_{i}\right\}\right)$ such that the spectral radius $\rho\left(T^{\delta}\right)=1$, where T^{δ} means the matrix with the entries $T_{i j}^{\delta}$.

Theorem (McMullen)

With the above conditions one has:

$$
\alpha\left(R^{n}(\mathcal{P}) \rightarrow \delta\right. \text { exponentially fast. }
$$

Hausdorff dimension of hyperbolic Julia sets

Theorem (McMullen)

For a hyperbolic polynomial $f(z)$ (i.e. expanding on its Julia set) there exists a unique invariant density μ of dimension $\delta=\operatorname{dim}_{H}\left(J_{f}\right)$.

McMullen also showed:
One can define a partition \mathcal{P} of a Julia set of a hyperbolic map f using external rays.
The eigenvalue algorithm applied to \mathcal{P} computes $\operatorname{dim}_{H}\left(J_{f}\right)$.

Hausdorff dimension of real Feigenbaum Julia sets

Let $f_{c}(z)=z^{2}+c, c \in \mathbb{R}$, be a Feigenbaum map (e.g. has periodic combinatorics). Let $P_{1}=\{z: \operatorname{Im} z>0,|z|<2\}$,
$P_{2}=\{z: \operatorname{Im} z<0,|z|<2\}$ and $\mathcal{P}=\left(P_{1}, P_{2}\right)$. Denote by $R^{n}(\mathcal{P})$ the collection of connected components of $f^{-n}\left(P_{1 / 2}\right)$. Given $R^{n}(\mathcal{P})=\left\{P_{i}^{(n)}\right\}$ introduce the matrix $T^{(n)}$ with entries

$$
T_{i j}^{(n)}=\left(\sup \left\{\left|f_{c}^{\prime}(y)\right|: y \in P_{i}^{(n)}, f_{c}(y) \in P_{j}^{(n)}\right\}\right)^{-1}
$$

if $f_{c}\left(P_{i}^{(n)}\right) \cap P_{j}^{(n)} \neq \varnothing$, and $T_{i j}^{(n)}=0$ otherwise. Let α_{n} be such that $\rho\left(\left(T^{(n)}\right)_{n}^{\alpha}\right)=1$.

Proposition (Dudko-Gorbovickis)

For each n one has $\alpha_{n} \leqslant \operatorname{dim}_{H}\left(J_{f}\right)$.
Empiric estimates based on the above proposition suggest that the Hausdorff dimension of the Julia set of $f_{C_{\text {Feig }}}$ is at least 1.41.

Other questions

- Given a real Fibonacci map $\operatorname{Fib}_{d}(z)=z^{d}+c_{\text {Fib }}$ for which d it has a wild attractor? (Bruin-Keller-Nowicki-van Strien \Rightarrow a wild attractor for sufficiently large d).
- Is there $d>2$ such that Fib_{d} has the Julia set of positive area?
- Let $F_{d}(z)$ be the period 2 fixed point with critical point of degree $d>2$. Is there d with $\operatorname{dim}_{\mathrm{H}}\left(J_{F_{d}}\right)=2$ or $\operatorname{area}\left(J_{F_{d}}\right)>0$? (Levin-Swiatek $\left.\Rightarrow \operatorname{dim}_{H}\left(J_{F_{d}}\right) \rightarrow 2\right)$
- Can one define appropriate tiling of the plane for complex periodic points of Feigenbaum renormalization?
- Construct sufficiently simple examples of Feigenbaum Julia sets of positive measure.
- Construct two-dimensional polynomial maps with Julia sets of positive measure.

Thank you!

This work was supported by the Polish National Science Centre grant 2016/23/P/ST1/04088 within the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No. 665778.

