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First Part : Introduction



Flows (X ,G )

A flow (X ,G ) consists of a pair X , a compact space, and G , a

topological group, and a continuous homomorphism from G into

the group Homeo(X ) of all the self homeomorphisms of X . We will

usually ignore this latter map and write gx for the image of x ∈ X

under the image of g ∈ G in Homeo(X ). By our assumption then

the map (g , x) 7→ gx is continuous. A flow (X ,G ) is:

• minimal when Gx is dense in X for every x ∈ X . A point x ∈ X

is called minimal if its orbit closure Gx is minimal.

• proximal if for every x , y ∈ X there is z ∈ X and a net gi ∈ G

such that lim gi (x , y) = lim(gix , giy) = (z , z).

• strongly proximal if for every probability measure µ ∈ P(X )

there is z ∈ X and a net gi ∈ G such that lim giµ = δz .
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Strong proximality implies proximality

If (X ,G ) is strongly proximal and x , y ∈ X , then we can form the

measure µ = 1
2(δx + δy ). Now lim giµ = δz implies

lim gi (x , y) = (z , z). Thus strong proximality impies proximality.
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• incontractible if for every n ∈ N the minimal points are dense in

X n.

• A closed invariant subset L of X × Y is a joining of the flows

(X ,G ) and (Y ,G ) if π1(L) = X and π2(L) = Y , where

πi , i = 1, 2 are the natural projections.

• Two flows (X ,G ) and (Y ,G ) are disjoint if X × Y is their

unique joining. We denote this relation by (X ,G ) ⊥ (Y ,G ).

• A surjective continuous map π : (X ,G )→ (Y ,G ) which

intertwines the G actions is called a factor map or a flow

homomorphism.
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Universal flows

For many properties P of minimal flows there is a universal

P-flow; i.e. a minimal flow (X ,G ) having property P which

admits every other flow with this property as its factor, and

moreover this universal P-flow is unique up to an automorphism.

Among these properties we have (i) minimality, (ii) proximality,

and (iii) strong proximality. The corresponding universal minimal

flows are denoted by M(G ), Π(G ) and Πs(G ) respectively.
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Groups

• A topological group G is amenable if for every flow (X ,G ) the

set PG (X ) of invariant probability measures on X is nonempty. It

can be shown that G is amenable iff Πs(G ) is the trivial one point

space. Solvable and compact groups are amenable. Non-abelian

free groups are not.

• A topological group G is strongly amenable when Π(G ) is

trivial.
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• A topological group G is maximally almost periodic (maxap for

short) if it has a continuous monomorphism into a compact group.

• The FC center of a group G is the collection of elements whose

conjugacy class is finite. It is a characteristic subgroup of G .

• The group G is an ICC group if every element e 6= g ∈ G has

an infinite conjugacy class.

• The FC radical of a group G is the unique normal subgroup N

of G such that G/N is ICC. It is obtained as an increasing union of

successive (possibly transfinite) FC-centers.
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A structure theorem

Theorem: Every group G either contains an infinite maxap normal

subgroup, or it contains a normal subgroup N C G such that G/N

is ICC.
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Furstenberg’s 1967 paper

In his famous 1967 paper “Disjointness in ergodic theory, minimal

sets, and a problem in Diophantine approximation” Furstenberg

[Fur-67] has the following results:

• Ω = {0, 1}Z ⊥ X for every minimal cascade (X ,T ).

• The subring B of Ω generated by the minimal functions is a

proper subring of Ω.

He conjectured that, similarly, the sub-algebra A of `∞(Z)

generated by the minimal functions in `∞(Z) is a proper

sub-algebra of `∞(Z).

Using these results he proved the following:

Theorem: For every α ∈ R \Q the set {2m3nα : m, n ∈ Z} is

dense in T = R/Z.
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Glasner-Weiss’ paper from 1983

• A subset A ⊂ Z is an interpolation set for a sub-algebra

A ⊂ `∞(Z) if for every ω ∈ {0, 1}A there is an element f ∈ A such

that f � A = ω.

• A subset A ⊂ Z is an small if for every N ∈ N the set

{n ∈ Z : n + [1,N] ∩ A = ∅} is syndetic (i.e. has bounded gaps).

In [GW-83] the authors prove the following:

Theorem: The collection of interpolation sets for the sub-algebra

A ⊂ `∞(Z), generated by the minimal functions, coincides with

the ideal of small sets. In particular this shows that A ( `∞(Z).
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Second Part : The main theorems



Bernoulli disjointness for the general infinite groups

We now list the main results in the recent work [GTWZ-21] :

Theorem A: For any infinite countable discrete group G one has:

(1) Ω = {0, 1}G ⊥ (X ,G ) for every minimal flow (X ,G ).

(2) The collection of interpolation sets for the sub-algebra

A ⊂ `∞(G ), generated by the minimal functions, coincides with

the ideal of small sets. In particular this shows that A ( `∞(G ).

Note: After our work had been circulated, Anton

Bernshteyn [Ber-19] found a different proof of the fact that the

Bernoulli flow is disjoint from minimal flows using the Lovász Local

Lemma.
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Corollary: Let G be an infinite discrete group and let M(G ) be its

universal minimal flow. Then the canonical map from βG to the

enveloping semigroup of M(G ) is not an isomorphism.

The question whether this map is an isomorphism was attributed

to Robert Ellis and, for the general group G , was open for more

than 50 years.
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A continuum of pairwise disjoint minimal flows

For the integers group Z, one has a continuum of minimal pairwise

disjoint minimal flows, namely the collection of irrational rotations

on the circle (T,Rα), where α ranges over a Hamel basis for R.

It follows that if (X ,Z) is a minimal metric flow then there is some

α such that (X ,Z) ⊥ (T,Rα). In fact (X ,T ) can be not disjoint

from at most a countable number of rotations.
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Theorem B: Let G be an infinite countable group. Then

1. For every nontrivial minimal flow (X ,G ) there is a non trivial

minimal flow (Y ,G ) with (X ,G ) ⊥ (Y ,G ).

2. There is a collection of cardinality c = 2ℵ0 of pairwise disjoint

metric minimal flows.

3. M(G ) ∼= Gleason({0, 1}c).

The last result answers a question of Balcar and B laszczyk who

proved it for Z.
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Further results

Theorem C: A countable infinite ICC group G acts freely on its

universal minimal proximal flow Π(G ).

This answers a question of Frisch, Tamuz, and Vahidi Ferdowsi,

who have shown in [FTVF-19] that the action is effective..
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Theorem D: Let G be a countable, infinite group. Then

Aut(M(G ),G ) has cardinality 2c, the largest possible cardinality.

In particular, M(G ) is not proximal.

Note that the flow M(G ) is a minimal left ideal of the right

topological semigroup βG , and has the form M(G ) = JG, where J

is the set of idempotents in M and G is a sub-group of M. Since

right multiplication on M is continuous it is easy to see that G can

be identified with the group Aut(M(G ),G ).

To say that Aut(M(G ),G ) is trivial (i.e. consists of the identity

element) is the same as saying that the flow (M(G ),G ) is

proximal; i.e. that M(G ) = Π(G ).
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Theorem E: Let G be an infinite countable group and let H be a

maxap group, then there is a free minimal flow (X ,G ) with

H < Aut(X ,G ).

Theorem E has been recently improved by Andy Zucker in [Zu-19]:

there it is shown that for any two countable groups G and H with

G infinite, there exists a minimal G -flow on the Cantor space such

that H embeds in its automorphism group.
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Third Part : The strategy of the

proof of Theorem A



The separated covering property

Definition:

1. Let D be a finite subset of G . A subset S ⊂ G is D-spaced if

for every distinct s1, s2 ∈ S , we have Ds1 ∩ Ds2 = ∅.
2. A minimal flow (X ,G ) has the separated covering property

(SCP) if for every nonempty open set U ⊂ X and any finite

D ⊂ G , there is a D-spaced S ⊂ G such that S−1U = X .

Proposition 1: The following conditions on a minimal (X ,G ) are

equivalent:

1. (X ,G ) has the SCP.

2. For every finite D ⊆ G , there is a D-spaced S ⊆ G so that for

every x ∈ X , Sx ⊆ X is dense.

3. (X ,G ) ⊥ {0, 1}G .
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One free G -flow with SCP suffices

Proposition 2: If the group G admits an essentially free flow with

the SCP then every minimal G -flow has the SCP.

Proposition 3: The Bernoulli shift is disjoint from all minimal,

proximal flows. In particular, all proximal flows have the SCP.
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The case of a normal maxap subgroup

Proposition 4: Suppose that G admits an infinite normal

subgroup H which is maxap. Then G admits a free, minimal flow

with the SCP.
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The case of an ICC quotient

Proposition 5:(FTVF and GTWZ) Let G be a countable ICC

group. Then there exists a metrizable, essentially free, minimal,

proximal G -flow X .

The fact that there is an effective such action is proven in the

remarkable work [FTVF-19]. They show that the groups for which

Π(G ) is trivial are exactly the groups with no ICC quotients, and

that for any group G

ker(G y Π(G )) = FC− radical = strongly amenable radical.

They asked whether the action of an ICC group on Π(G ) is free

and we show in our work that this is indeed the case.
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Proving Theorem A

Collecting the results mentioned so far we can now complete the

proof of Theorem A as follows:

The structure theorem reduces the proof to two cases.

• If G contains an infinite normal maxap group then we are done.

• Otherwise G contains a normal subgroup N, namely the

FC-radical, such that G/N is ICC. If N is trivial G itself is ICC and

again we are done.

If N is not trivial then also F , the FC center of G consisting of all

elements of G with finite conjugacy classes, is nontrivial. Note

that F is a characteristic subgroup of G .
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When F is finite G/F is ICC and again a simple argument shows

that G has SCP. If F is infinite, let Z be its center.

If Z is infinite, it is a normal maxap subgroup and we are done.

Finally, when Z is finite, the group F ′ = F/Z is residually finite

(this follows since every element of F has a finite conjugacy class in

G ). As such it is an infinite maxap normal subgroup of G ′ = G/Z

hence G ′ has SCP and again one deduces that also G has SCP.

The proof of Theorem A is complete.
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Part Four : The space S(AG ), the

closure of the strongly irreducible

subshifts



Strongly and precisely irreducible subshifts

Definition: Let A be a finite set and G a countable group.

1. A subshift X ⊂ AG is said to be strongly irreducible if there

exists a finite set D ⊂ G such that for every two finite sets

E1,E2 ⊂ G which are D-spaced and for every x1, x2 ∈ X there

is x ∈ X with

x � E1 = x1 � E1 and x � E2 = x2 � E2.

2. A subshift X ⊂ (AN)G is said to be precisely irreducible if

there exists a finite set D ⊂ G such that for every two finite

sets E1,E2 ⊂ G which are D-spaced and for every x1, x2 ∈ X

there is x ∈ X with

x � E1 = x1 � E1 and x � E2 = x2 � E2.

23



Residual properties of S((AN)G )

Let S((AN)G ) denote the closure of the collection of the precisely

irreducible subshifts.

Theorem: The following are dense Gδ subsets of S((AN)G ):

1. {Z : Z is minimal}
2. {Z : Z is essentially free}
3. Given a minimal G -flow X , {Z : Z ⊥ X}.
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