Entropy in the context of aperiodic order

Till Hauser

FSU Jena

June 16, 2021

Introduction

Definition (Word counting entropy)

For $a=(a_k)_{k\in\mathbb{Z}}\in\{0,1\}^\mathbb{Z}$ we define the (Word counting) entropy as

$$h_{\mathbf{word}}(a) := \lim_{n \to \infty} \frac{\log |W_n(a)|}{n},$$

where $W_n(a) := \{(a_l)_{l=k+1}^{k+n}; k \in \mathbb{Z}\}.$

Setting

G σ-compact locally compact Abelian group (σ-cpt. LCA group).

Setting

G σ-compact locally compact Abelian group (σ-cpt. LCA group).

Example

 $\mathbb{Z}^d,\,\mathbb{R}^d,\,\mathbb{T}^d,\,\dots$

Setting

G σ-compact locally compact Abelian group (σ-cpt. LCA group).

Example

 $\mathbb{Z}^d,\,\mathbb{R}^d,\,\mathbb{T}^d,\,\dots$

Example

Additive group of dyadic numbers \mathbb{Q}_2 .

Setting

G σ -compact locally compact Abelian group (σ -cpt. LCA group).

Example

 \mathbb{Z}^d , \mathbb{R}^d , \mathbb{T}^d , ...

Example

Additive group of dyadic numbers \mathbb{Q}_2 .

Remark (Basic Idea of dyadic numbers \mathbb{Q}_2)

For
$$(x_k)_{k=-m}^n$$
 in $\{0,1\}$:
 $x_n \dots x_1 \cdot x_0 x_{(-1)} \dots x_{(-m)} := \sum_{k=-m}^n x_k 2^k$.

Setting

G σ -compact locally compact Abelian group (σ -cpt. LCA group).

Example

 \mathbb{Z}^d , \mathbb{R}^d , \mathbb{T}^d , ...

Example

Additive group of dyadic numbers \mathbb{Q}_2 .

Remark (Basic Idea of dyadic numbers \mathbb{Q}_2)

For
$$(x_k)_{k=-m}^n$$
 in $\{0,1\}$:
 $x_n \dots x_1 . x_0 x_{(-1)} \dots x_{(-m)} := \sum_{k=-m}^n x_k 2^k$.

 $\mathbb{Z}[1/2] := \mathsf{set} \ \mathsf{of} \ \mathsf{rational} \ \mathsf{numbers} \ \mathsf{with} \ \mathsf{finite} \ \mathsf{binary} \ \mathsf{expansion} \ \mathsf{as} \ \mathsf{above}.$

Setting

G σ -compact locally compact Abelian group (σ -cpt. LCA group).

Example

 \mathbb{Z}^d , \mathbb{R}^d , \mathbb{T}^d , ...

Example

Additive group of dyadic numbers \mathbb{Q}_2 .

Remark (Basic Idea of dyadic numbers \mathbb{Q}_2)

For
$$(x_k)_{k=-m}^n$$
 in $\{0,1\}$:
 $x_n \dots x_1 . x_0 x_{(-1)} \dots x_{(-m)} := \sum_{k=-m}^n x_k 2^k$.

 $\mathbb{Z}[1/2] := \text{set of rational numbers with finite binary expansion as above.}$

 \mathbb{R} 'completion' of $\mathbb{Z}[1/2]$ with respect to standard metric.

Setting

G σ -compact locally compact Abelian group (σ -cpt. LCA group).

Example

 \mathbb{Z}^d , \mathbb{R}^d , \mathbb{T}^d , ...

Example

Additive group of dyadic numbers \mathbb{Q}_2 .

Remark (Basic Idea of dyadic numbers \mathbb{Q}_2)

For
$$(x_k)_{k=-m}^n$$
 in $\{0,1\}$:
 $x_n \dots x_1 . x_0 x_{(-1)} \dots x_{(-m)} := \sum_{k=-m}^n x_k 2^k$.

 $\mathbb{Z}[1/2] := \text{set of rational numbers with finite binary expansion as above.}$

 \mathbb{R} 'completion' of $\mathbb{Z}[1/2]$ with respect to standard metric.

 \mathbb{Q}_2 'completion' of $\mathbb{Z}[1/2]$ with respect to 'mirrored' metric.

Setting

G σ -compact locally compact Abelian group (σ -cpt. LCA group).

Example

 \mathbb{Z}^d . \mathbb{R}^d . \mathbb{T}^d

Example

Additive group of dyadic numbers \mathbb{Q}_2 .

Remark (Basic Idea of dyadic numbers \mathbb{Q}_2)

For
$$(x_k)_{k=-m}^n$$
 in $\{0,1\}$:
 $x_n \dots x_1 . x_0 x_{(-1)} \dots x_{(-m)} := \sum_{k=-m}^n x_k 2^k$.

 $\mathbb{Z}[1/2] := \text{set of rational numbers with finite binary expansion as above.}$

respect to standard metric.

 \mathbb{R} 'completion' of $\mathbb{Z}[1/2]$ with \mathbb{Q}_2 'completion' of $\mathbb{Z}[1/2]$ with respect to 'mirrored' metric.

 \mathbb{R} , \mathbb{Q}_2 field extensions of \mathbb{Q} .

Setting

G σ -compact locally compact Abelian group (σ -cpt. LCA group).

Example

 \mathbb{Z}^d . \mathbb{R}^d . \mathbb{T}^d

Example

Additive group of dyadic numbers \mathbb{Q}_2 .

Remark (Basic Idea of dyadic numbers \mathbb{Q}_2)

For
$$(x_k)_{k=-m}^n$$
 in $\{0,1\}$:
 $x_n \dots x_1 \cdot x_0 x_{(-1)} \dots x_{(-m)} := \sum_{k=-m}^n x_k 2^k$.

 $\mathbb{Z}[1/2] := \text{set of rational numbers with finite binary expansion as above.}$

respect to standard metric.

 \mathbb{R} 'completion' of $\mathbb{Z}[1/2]$ with \mathbb{Q}_2 'completion' of $\mathbb{Z}[1/2]$ with respect to 'mirrored' metric.

 \mathbb{R} , \mathbb{Q}_2 field extensions of \mathbb{Q} .

0.010101010101...

Setting

G σ -compact locally compact Abelian group (σ -cpt. LCA group).

Example

 \mathbb{Z}^d . \mathbb{R}^d . \mathbb{T}^d

Example

Additive group of dyadic numbers \mathbb{Q}_2 .

Remark (Basic Idea of dyadic numbers \mathbb{Q}_2)

For
$$(x_k)_{k=-m}^n$$
 in $\{0,1\}$:
 $x_n \dots x_1 . x_0 x_{(-1)} \dots x_{(-m)} := \sum_{k=-\infty}^n x_k 2^k$.

 $\mathbb{Z}[1/2] := \text{set of rational numbers with finite binary expansion as above.}$

respect to standard metric.

 \mathbb{R} 'completion' of $\mathbb{Z}[1/2]$ with \mathbb{Q}_2 'completion' of $\mathbb{Z}[1/2]$ with respect to 'mirrored' metric.

 \mathbb{R} , \mathbb{Q}_2 field extensions of \mathbb{Q} .

0.010101010101...

...01010101011.0

Setting

G σ -compact locally compact Abelian group (σ -cpt. LCA group).

Example

 \mathbb{Z}^d . \mathbb{R}^d . \mathbb{T}^d

Example

Additive group of dyadic numbers \mathbb{Q}_2 .

Remark (Basic Idea of dyadic numbers \mathbb{Q}_2)

For
$$(x_k)_{k=-m}^n$$
 in $\{0,1\}$:
 $x_n \dots x_1 . x_0 x_{(-1)} \dots x_{(-m)} := \sum_{k=0}^n x_k 2^k$.

 $\mathbb{Z}[1/2] := \text{set of rational numbers with finite binary expansion as above.}$

respect to standard metric.

 \mathbb{R} 'completion' of $\mathbb{Z}[1/2]$ with \mathbb{Q}_2 'completion' of $\mathbb{Z}[1/2]$ with respect to 'mirrored' metric.

 \mathbb{R} , \mathbb{Q}_2 field extensions of \mathbb{Q} .

$$=\frac{1}{3}=$$

...01010101011.0

Setting

G σ-compact locally compact Abelian group (σ-cpt. LCA group).

Example

 \mathbb{Z}^d , \mathbb{R}^d , \mathbb{T}^d , ...

Example

Additive group of p-adic numbers \mathbb{Q}_p .

Definition (Delone set)

Setting

G σ -compact locally compact Abelian group (σ -cpt. LCA group).

Example

 \mathbb{Z}^d . \mathbb{R}^d . \mathbb{T}^d

Example

Additive group of p-adic numbers \mathbb{Q}_p .

Definition (Delone set)

 $\omega \subseteq G$ uniformly discrete, whenever there is an open neighbourhood $V \subseteq G$ such that $\{V + x; x \in \omega\}$ is a disjoint family.

Setting

G σ -compact locally compact Abelian group (σ -cpt. LCA group).

Example

 \mathbb{Z}^d , \mathbb{R}^d , \mathbb{T}^d , ...

Example

Additive group of p-adic numbers \mathbb{Q}_p .

Definition (Delone set)

 $\omega \subseteq G$ uniformly discrete, whenever there is an open neighbourhood $V \subseteq G$ such that $\{V+x; x \in \omega\}$ is a disjoint family.

 $\omega \subseteq G$ relatively dense, whenever there is a compact subset $K \subseteq G$ such that $\bigcup_{x \in \omega} (K + x) = G$.

Setting

G σ-compact locally compact Abelian group (σ-cpt. LCA group).

Example

 \mathbb{Z}^d , \mathbb{R}^d , \mathbb{T}^d , ...

Example

Additive group of p-adic numbers \mathbb{Q}_p .

Definition (Delone set)

 $\omega \subseteq G$ uniformly discrete, whenever there is an open neighbourhood $V \subseteq G$ such that $\{V + x; x \in \omega\}$ is a disjoint family.

 $\omega \subseteq G$ relatively dense, whenever there is a compact subset $K \subseteq G$ such that $\bigcup_{x \in \omega} (K + x) = G$.

 $\omega \subseteq G$ *Delone*, whenever ω uniformly discrete and relatively dense.

Definition (Patches)

Let $\omega\subseteq G$ be a Delone set. For compact subsets $A\subseteq G$ we define the set of A-patches as

$$\mathsf{Pat}_{\omega}(A) := \{(\omega - g) \cap A; \ g \in \omega\}.$$

Definition (Patches)

Let $\omega\subseteq G$ be a Delone set. For compact subsets $A\subseteq G$ we define the set of A-patches as

$$\mathsf{Pat}_{\omega}(A) := \{(\omega - g) \cap A; \ g \in \omega\}.$$

Definition (Patches)

Let $\omega\subseteq G$ be a Delone set. For compact subsets $A\subseteq G$ we define the *set* of A-patches as

$$\mathsf{Pat}_{\omega}(A) := \{(\omega - g) \cap A; \ g \in \omega\}.$$

Definition (Patches)

Let $\omega\subseteq G$ be a Delone set. For compact subsets $A\subseteq G$ we define the *set* of A-patches as

$$\mathsf{Pat}_{\omega}(A) := \{(\omega - g) \cap A; \ g \in \omega\}.$$

• •

Definition (Patches)

$$\mathsf{Pat}_{\omega}(A) := \{(\omega - g) \cap A; \ g \in \omega\}$$

Definition (Patches)

$$\mathsf{Pat}_{\omega}(A) := \{(\omega \! - \! g) \! \cap \! A; \ g \in \omega \}$$

Definition (FLC)

 $\omega\subseteq G$ is called *FLC* (of finite local complexity), if $\operatorname{Pat}_{\omega}(A)$ is finite for all compact subsets $A\subseteq G$.

Definition (Patches)

$$\mathsf{Pat}_{\omega}(A) := \{(\omega - g) \cap A; \ g \in \omega\}$$

Definition (FLC)

 $\omega \subseteq G$ is called *FLC* (of finite local complexity), if $\operatorname{Pat}_{\omega}(A)$ is finite for all compact subsets $A \subseteq G$.

Example

 $\mathbb{Z} \subseteq \mathbb{R}$ is a FLC Delone set.

Definition (Patches)

$$\mathsf{Pat}_{\omega}(A) := \{(\omega - g) \cap A; \ g \in \omega\}$$

Definition (FLC)

 $\omega \subseteq G$ is called *FLC* (of finite local complexity), if $\operatorname{Pat}_{\omega}(A)$ is finite for all compact subsets $A \subseteq G$.

Example

 $\mathbb{Z} \subseteq \mathbb{R}$ is a FLC Delone set.

Example

 $\{n+1/n;\ n\in\mathbb{Z}\setminus\{0\}\}\subseteq\mathbb{R}$ is a Delone set but not FLC.

Definition (Patches)

$$\mathsf{Pat}_{\omega}(A) := \{(\omega - g) \cap A; \ g \in \omega\}$$

Definition (FLC)

 $\omega \subseteq G$ is called *FLC* (of finite local complexity), if $\operatorname{Pat}_{\omega}(A)$ is finite for all compact subsets $A \subseteq G$.

Example

 $\mathbb{Z} \subseteq \mathbb{R}$ is a FLC Delone set.

Example

 $\{n+1/n; n \in \mathbb{Z} \setminus \{0\}\} \subseteq \mathbb{R}$ is a Delone set but not FLC.

Example

FLC Delone set:

Definition (Van Hove boundary)

For $K, A \subseteq G$ compact:

$$\partial_K A := (K + A) \cap (K + \overline{G \setminus A}),$$

$$(A+B:=\{a+b;\ a\in A,b\in B\},$$

 \overline{A} closure of A.)

Definition (Van Hove boundary)

$$\partial_K A := (K + A) \cap (K + \overline{G \setminus A}),$$

 $(A + B) := \{a + b; a \in A, b \in B\},$
 \overline{A} closure of A .)

Definition (Van Hove boundary)

$$\partial_K A := (K + A) \cap (K + \overline{G \setminus A}),$$

 $(A + B) := \{a + b; a \in A, b \in B\},$
 \overline{A} closure of A .)

Definition (Van Hove boundary)

$$\partial_K A := (K + A) \cap (K + \overline{G \setminus A}),$$

 $(A + B := \{a + b; a \in A, b \in B\},$
 \overline{A} closure of A .)

Definition (Van Hove boundary)

$$\partial_K A := (K + A) \cap (K + \overline{G \setminus A}),$$

 $(A + B) := \{a + b; a \in A, b \in B\},$
 \overline{A} closure of A .)

Definition (Van Hove boundary)

For $K, A \subseteq G$ compact:

$$\partial_K A := (K + A) \cap (K + \overline{G \setminus A}),$$

 $(A + B) := \{a + b; a \in A, b \in B\},$
 \overline{A} closure of A .)

Definition (Van Hove sequence)

Sequence $(A_n)_{n\in\mathbb{N}}$ of compact subsets with $\lim_{n\to\infty}\frac{\lambda(\partial_KA_n)}{\lambda(A_n)}=0$ for any $K\subseteq G$ compact.

(λ Haar measure of G)

Definition (Van Hove boundary)

For $K, A \subseteq G$ compact:

$$\partial_K A := (K + A) \cap (K + \overline{G \setminus A}),$$

Definition (Van Hove sequence)

Sequence $(A_n)_{n\in\mathbb{N}}$ of compact subsets with $\lim_{n\to\infty}\frac{\lambda(\partial_K A_n)}{\lambda(A_n)}=0$ for any $K\subseteq G$ compact.

(λ Haar measure of G)

Definition (Van Hove boundary)

For $K, A \subseteq G$ compact:

$$\partial_K A := (K + A) \cap (K + \overline{G \setminus A}),$$

Definition (Van Hove sequence)

Sequence $(A_n)_{n\in\mathbb{N}}$ of compact subsets with $\lim_{n\to\infty}\frac{\lambda(\partial_K A_n)}{\lambda(A_n)}=0$ for any $K\subseteq G$ compact.

(λ Haar measure of G)

Example

 $(B_n(0))_{n\in\mathbb{N}}$ in \mathbb{R}^d w.r.t. any metric induced by a norm.

Definition (Van Hove boundary)

For $K, A \subseteq G$ compact:

$$\partial_K A := (K + A) \cap (K + \overline{G \setminus A}),$$

Definition (Van Hove sequence)

Sequence $(A_n)_{n\in\mathbb{N}}$ of compact subsets with $\lim_{n\to\infty}\frac{\lambda(\partial_KA_n)}{\lambda(A_n)}=0$ for any $K\subseteq G$ compact.

(λ Haar measure of G)

Example

 $(B_n(0))_{n\in\mathbb{N}}$ in \mathbb{R}^d w.r.t. any metric induced by a norm.

Example

 $(B_n(0))_{n\in\mathbb{N}}$ in \mathbb{Z}^d w.r.t. any restr. metric induced by a norm on \mathbb{R}^d .

Definition (Van Hove boundary)

For $K, A \subseteq G$ compact:

$$\partial_K A := (K + A) \cap (K + \overline{G \setminus A}),$$

Definition (Van Hove sequence)

Sequence $(A_n)_{n\in\mathbb{N}}$ of compact subsets with $\lim_{n\to\infty}\frac{\lambda(\partial_K A_n)}{\lambda(A_n)}=0$ for any $K\subseteq G$ compact.

(λ Haar measure of G)

Example

 $(B_n(0))_{n\in\mathbb{N}}$ in \mathbb{R}^d w.r.t. any metric induced by a norm.

Example

 $(B_n(0))_{n\in\mathbb{N}}$ in \mathbb{Z}^d w.r.t. any restr. metric induced by a norm on \mathbb{R}^d .

Example

 $(B_n(0))_{n\in\mathbb{N}}$ in \mathbb{Q}_p w.r.t. metric induced by absolute value.

van Hove sequences

Definition (Van Hove boundary)

For $K, A \subseteq G$ compact:

$$\partial_K A := (K + A) \cap (K + \overline{G \setminus A}),$$

Definition (Van Hove sequence)

Sequence $(A_n)_{n\in\mathbb{N}}$ of compact subsets with $\lim_{n\to\infty}\frac{\lambda(\partial_KA_n)}{\lambda(A_n)}=0$ for any $K\subseteq G$ compact.

(λ Haar measure of G)

Example

 $(B_n(0))_{n\in\mathbb{N}}$ in \mathbb{R}^d w.r.t. any metric induced by a norm.

Example

 $(B_n(0))_{n\in\mathbb{N}}$ in \mathbb{Z}^d w.r.t. any restr. metric induced by a norm on \mathbb{R}^d .

Example

 $(B_n(0))_{n\in\mathbb{N}}$ in \mathbb{Q}_p w.r.t. metric induced by absolute value.

Example

NOT $(B_n(0))_{n\in\mathbb{N}}$ in \mathbb{Z} if equipped with discrete metric.

van Hove sequences

Definition (Van Hove boundary)

For $K, A \subseteq G$ compact:

$$\partial_K A := (K + A) \cap (K + \overline{G \setminus A}),$$

Definition (Van Hove sequence)

Sequence $(A_n)_{n\in\mathbb{N}}$ of compact subsets with $\lim_{n\to\infty}\frac{\lambda(\partial_KA_n)}{\lambda(A_n)}=0$ for any $K\subseteq G$ compact.

(λ Haar measure of G)

Remark

Any σ -cpt. LCA group allows for a metric s.t. $(B_n(0))_{n\in\mathbb{N}}$ is a van Hove sequence.

Example

 $(B_n(0))_{n\in\mathbb{N}}$ in \mathbb{R}^d w.r.t. any metric induced by a norm.

Example

 $(B_n(0))_{n\in\mathbb{N}}$ in \mathbb{Z}^d w.r.t. any restr. metric induced by a norm on \mathbb{R}^d .

Example

 $(B_n(0))_{n\in\mathbb{N}}$ in \mathbb{Q}_p w.r.t. metric induced by absolute value.

Example

NOT $(B_n(0))_{n\in\mathbb{N}}$ in \mathbb{Z} if equipped with discrete metric.

Patch counting entropy

Remark

Choose metric d such that $(B_n(0))_{n\in\mathbb{N}}$ is a van Hove sequence in G.

Patch counting entropy

Remark

Choose metric d such that $(B_n(0))_{n\in\mathbb{N}}$ is a van Hove sequence in G.

Definition (Patch counting entropy)

We define the patch counting entropy of a FLC Delone set $\omega \subseteq G$ as

$$h_{pat}(\omega) := \limsup_{n o \infty} rac{\log |\operatorname{Pat}_{\omega}(\mathcal{B}_n(0))|}{\lambda(\mathcal{B}_n(0))}.$$

Patch counting entropy

Remark

Choose metric d such that $(B_n(0))_{n\in\mathbb{N}}$ is a van Hove sequence in G.

Definition (Patch counting entropy)

We define the patch counting entropy of a FLC Delone set $\omega \subseteq G$ as

$$h_{pat}(\omega) := \limsup_{n o \infty} rac{\log |\operatorname{Pat}_{\omega}(B_n(0))|}{\lambda(B_n(0))}.$$

Theorem (J. Lagarias, 1999)

 $h_{pat}(\omega) < \infty$ for FLC Delone sets in \mathbb{R}^d .

Definition (Delone action π_{ω})

For ω Delone set in G:

$$\pi_{\omega} \colon G \times X_{\omega} \to X_{\omega}, \\ \pi_{\omega}(g, \xi) := \xi + g$$

$$X_{\omega} := \overline{\{\omega + g; g \in G\}}^{A(G)},$$

$$A(G) := \{A \subseteq G \text{ closed}\}\$$
with 'local rubber topology'.

Definition (Delone action π_{ω})

For ω Delone set in G:

$$\pi_{\omega} \colon G \times X_{\omega} \to X_{\omega},$$

 $\pi_{\omega}(g, \xi) := \xi + g$

$$X_{\omega} := \overline{\{\omega + g; g \in G\}}^{A(G)},$$

$$\mathcal{A}(G) := \{A \subseteq G \text{ closed}\}$$

with 'local rubber topology'.

Remark

Consider a van Hove sequence $(A_n)_{n\in\mathbb{N}}$ and a Delone set ξ in G.

Definition (Delone action π_{ω})

For ω Delone set in G:

$$\pi_{\omega} \colon G \times X_{\omega} \to X_{\omega}, \\ \pi_{\omega}(g, \xi) := \xi + g$$

$$X_{\omega} := \overline{\{\omega + g; g \in G\}}^{A(G)},$$

 $\mathcal{A}(G) := \{ A \subseteq G \text{ closed} \}$

with 'local rubber topology'.

Remark

Consider a van Hove sequence $(A_n)_{n\in\mathbb{N}}$ and a Delone set ξ in G.

Definition (Top. entropy)

For action π of G on cpt.

Hausdorff space X:

$$h(\pi) := \sup_{\mathcal{U}} \limsup_{n \to \infty} \frac{\log N(\mathcal{U}_{\xi \cap A_n})}{\lambda(A_n)}$$

Definition (Delone action π_{ω})

For ω Delone set in G:

$$\pi_{\omega} \colon G \times X_{\omega} \to X_{\omega}, \\ \pi_{\omega}(g, \xi) := \xi + g$$

$$X_{\omega} := \overline{\{\omega + g; g \in G\}}^{A(G)},$$

$$\mathcal{A}(G) := \{A \subseteq G \text{ closed}\}$$

with 'local rubber topology'.

Remark

Consider a van Hove sequence $(A_n)_{n\in\mathbb{N}}$ and a Delone set ξ in G.

Definition (Top. entropy)

For action π of G on cpt.

Hausdorff space X:

$$h(\pi) := \sup_{\mathcal{U}} \limsup_{n \to \infty} \frac{\log N(\mathcal{U}_{\xi \cap A_n})}{\lambda(A_n)}$$

Remark

 $N(\mathcal{U}) =$ minimal cardinality of subcover of \mathcal{U} \mathcal{U}_F common refinement of $\pi^{-g}(\mathcal{U})$ for $g \in F$.

Definition (Delone action π_{ω})

For ω Delone set in G:

$$\pi_{\omega} \colon G \times X_{\omega} \to X_{\omega}, \\ \pi_{\omega}(g, \xi) := \xi + g$$

$$X_{\omega} := \overline{\{\omega + g; g \in G\}}^{A(G)},$$

$$\mathcal{A}(G) := \{A \subseteq G \text{ closed}\}$$

with 'local rubber topology'.

Remark

Consider a van Hove sequence $(A_n)_{n\in\mathbb{N}}$ and a Delone set ξ in G.

Definition (Top. entropy)

For action π of G on cpt.

Hausdorff space X:

$$h(\pi) := \sup_{\mathcal{U}} \limsup_{n \to \infty} \frac{\log N(\mathcal{U}_{\xi \cap A_n})}{\lambda(A_n)}$$

Remark

 $N(\mathcal{U}) = minimal \ cardinality \ of \ subcover \ of \ \mathcal{U}$ \mathcal{U}_F common refinement of $\pi^{-g}(\mathcal{U})$ for $g \in F$.

Theorem (T.H. and F. M. Schneider)

Notion is independent from the choice of ξ and $(A_n)_{n\in\mathbb{N}}$

Theorem (M. Baake, D. Lenz, C. Richard, T. H.)

If G is compactly generated then

$$\left(\frac{\log|\operatorname{Pat}_{\omega}(B_n(0))|}{\lambda(B_n(0))}\right)_{n\in\mathbb{N}}$$

converges to $h(\pi_{\omega})$.

Theorem (M. Baake, D. Lenz, C. Richard, T. H.)

If G is compactly generated then

$$\left(\frac{\log|\operatorname{Pat}_{\omega}(B_n(0))|}{\lambda(B_n(0))}\right)_{n\in\mathbb{N}}$$

converges to $h(\pi_{\omega})$.

Example (H. 2020)

There exists a FLC Delone set $\omega \subseteq \mathbb{Q}_2$ such that

$$\left(\frac{\log|\operatorname{\mathsf{Pat}}_\omega(B_n(0))|}{\lambda(B_n(0))}\right)_{n\in\mathbb{N}}$$

does not converge.

Theorem (M. Baake, D. Lenz, C. Richard, T. H.)

If G is compactly generated then

$$\left(\frac{\log|\operatorname{\mathsf{Pat}}_{\omega}(B_n(0))|}{\lambda(B_n(0))}\right)_{n\in\mathbb{N}}$$

converges to $h(\pi_{\omega})$.

Example (H. 2020)

There exists a FLC Delone set $\omega \subseteq \mathbb{Q}_2$ such that

$$\left(\frac{\log|\operatorname{\mathsf{Pat}}_\omega(B_n(0))|}{\lambda(B_n(0))}
ight)_{n\in\mathbb{N}}$$

does not converge.

Example (H. 2020)

There exists a FLC Delone set $\omega \subseteq \mathbb{Q}_2$ such that

$$\left(\frac{\log|\operatorname{\mathsf{Pat}}_{\omega}(B_n(0))|}{\lambda(B_n(0))}\right)_{n\in\mathbb{N}}$$

converges to $\log(2)$, while $h(\pi_{\omega}) = 0$.

Theorem (M. Baake, D. Lenz, C. Richard, T. H.)

If G is compactly generated then

$$\left(\frac{\log|\operatorname{\mathsf{Pat}}_\omega(B_n(0))|}{\lambda(B_n(0))}\right)_{n\in\mathbb{N}}$$

converges to $h(\pi_{\omega})$.

Example (H. 2020)

There exists a FLC Delone set $\omega \subset \mathbb{Q}_2$ such that

$$\left(rac{\log |\operatorname{\mathsf{Pat}}_\omega(B_n(0))|}{\lambda(B_n(0))}
ight)_{n \in \mathbb{N}}$$

does not converge.

Example (H. 2020)

There exists a FLC Delone set $\omega \subseteq \mathbb{Q}_2$ such that

$$\left(\frac{\log|\operatorname{\mathsf{Pat}}_{\omega}(B_n(0))|}{\lambda(B_n(0))}\right)_{n\in\mathbb{N}}$$

converges to $\log(2)$, while $h(\pi_{\omega}) = 0$.

Example (H. 2020)

There exists a FLC Delone set $\omega \subseteq \mathbb{Q}_2$ such that

$$\left(\frac{\log|\operatorname{\mathsf{Pat}}_\omega(B_n(0))|}{\lambda(B_n(0))}\right)_{n\in\mathbb{N}}$$

converges to ∞ .

Remark (Setting)

Let G be a σ -cpt. LCA group.

Remark (Setting)

Let G be a σ -cpt. LCA group.

Theorem (M. Baake, D. Lenz, C. Richard, T. H.)

Consider a FLC Delone set ω in G that is 'pure point diffractive'. If G is compactly generated then

$$\left(\frac{\log|\operatorname{\mathsf{Pat}}_\omega(B_n(0))|}{\lambda(B_n(0))}\right)_{n\in\mathbb{N}}$$

converges to 0.

Remark (Setting)

Let G be a σ -cpt. LCA group.

Theorem (M. Baake, D. Lenz, C. Richard, T. H.)

Consider a FLC Delone set ω in G that is 'pure point diffractive'. If G is compactly generated then

$$\left(\frac{\log|\operatorname{\mathsf{Pat}}_\omega(B_n(0))|}{\lambda(B_n(0))}\right)_{n\in\mathbb{N}}$$

converges to 0.

Theorem (H. 2021)

For any p.p.d. FLC Delone set ω in G there holds $h(\pi_{\omega}) = 0$.

Remark (Setting)

Let G be a σ -cpt. LCA group.

Theorem (M. Baake, D. Lenz, C. Richard, T. H.)

Consider a FLC Delone set ω in G that is 'pure point diffractive'. If G is compactly generated then

$$\left(\frac{\log|\operatorname{\mathsf{Pat}}_\omega(B_n(0))|}{\lambda(B_n(0))}\right)_{n\in\mathbb{N}}$$

converges to 0.

Theorem (H. 2021)

For any p.p.d. FLC Delone set ω in G there holds $h(\pi_{\omega}) = 0$.

Conjecture (H. 2021)

There exists a p.p.d. FLC Delone set $\omega \subseteq \mathbb{Q}_2$ such that

$$\left(\frac{\log|\operatorname{\mathsf{Pat}}_\omega(B_n(0))|}{\lambda(B_n(0))}\right)_{n\in\mathbb{N}}$$

does not converge.

Remark (Setting)

Let G be a σ -cpt. LCA group.

Theorem (M. Baake, D. Lenz, C. Richard, T. H.)

Consider a FLC Delone set ω in G that is 'pure point diffractive'. If G is compactly generated then

$$\left(\frac{\log|\operatorname{\mathsf{Pat}}_\omega(B_n(0))|}{\lambda(B_n(0))}\right)_{n\in\mathbb{N}}$$

converges to 0.

Theorem (H. 2021)

For any p.p.d. FLC Delone set ω in G there holds $h(\pi_{\omega}) = 0$.

Conjecture (H. 2021)

There exists a p.p.d. FLC Delone set $\omega \subseteq \mathbb{Q}_2$ such that

$$\left(\frac{\log|\operatorname{\mathsf{Pat}}_\omega(B_n(0))|}{\lambda(B_n(0))}\right)_{n\in\mathbb{N}}$$

does not converge.

Conjecture (H. 2020)

For any $r \in [0, \infty]$ there exists a p.p.d. FLC Delone set $\omega \subseteq \mathbb{Q}_2$ such that

$$\left(\frac{\log|\operatorname{\mathsf{Pat}}_\omega(B_n(0))|}{\lambda(B_n(0))}\right)_{n\in\mathbb{N}}$$

converges to r.