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Dynamical system

A dynamical system is a pair (X , f ) where X is a compact
metrizable space and f : X → X is a continuous map.

Minimal set of a system

A set M ⊆ X is a minimal set of (X , f ) if M is a nonempty,
closed, f -invariant and there is no proper subset of M having these
three properties.

Minimal set on a space
If M ⊆ X is a minimal set of some dynamical system on a space X ,
we call M a minimal set on the space X .

Free interval
A free interval in X is an open set homeomorphic to (0, 1).
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Continuum
A topological space X is a continuum if X is a nonempty compact
connected metrizable space.

Locally connectedness
A topological space X is locally connected at x ∈ X if for every
neighborhood U of x there exists a connected neighborhood V ⊆ U
of x .
X is locally connected if it is locally connected at each of its
points.

Notation
For a metrizable (not necessarily compact) space Y , the symbol
M(Y ) denotes the system of all minimal sets on Y .
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Theorem [Birkhoff]

Any dynamical system has a minimal set.

The complete characterization of topological structure of minimal
sets is known on:

zero-dimensional compact metrizable spaces:
- finite or Cantor sets

the unit interval:
- finite or Cantor sets

the circle:
- finite or Cantor sets or the entire circle

graphs:
- finite or Cantor sets or unions of finitely many pairwise disjoint
circles

. . .
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Theorem [Balibrea, Downarowicz, Hric, Snoha, Špitalský (2009)]

Let X be a local dendrite (i.e., a locally connected continuum
with finitely many circles).
Then M is a minimal set on X if and only if one of the following
conditions holds:

M is a finite set;
M is a cantoroid (i.e., a compact metrizable space
without isolated points where degenerate components
are dense);
M is a union of finitely many pairwise disjoint circles.
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Continua with dense free intervals

X = LJ ∪ J ∪ RJ

X is a continuum,
J is a free interval dense in X ,
LJ , RJ are nowhere dense locally connected continua disjoint
with J

- X : a compactification of (the real line) J
- LJ ,RJ : remainders
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Continua with dense free intervals

J

LJ RJ
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Continua with dense free intervals

Theorem [Martínez-de-la-Vega, Minc (2014)]

For each nondegenerate continuum P there is uncountably many
topologically distinct compactifications of [1,∞) each with P
as the remainder.

Corollary
For every nondegenerate continua L,R there are uncountably many
topologically distinct spaces X = LJ ∪ J ∪ RJ such that

LJ is homeomorphic to L,
RJ is homeomorphic to R .
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Continua with dense free intervals

Up to the symmetry, there are three possibilities

for X = LJ ∪ J ∪ RJ :

0 both LJ ,RJ are singletons; X is path connected,
1 RJ is a singleton, LJ is nondegenerate

- if RJ ⊆ LJ , then X is path connected
- if LJ ∩ RJ = ∅, then the path components are LJ and J ∪ RJ

2 both LJ ,RJ are nondegenerate
- if LJ ∩ RJ 6= ∅, then the path components are J, LJ ∪ RJ

- if LJ ∩ RJ = ∅, then the path components are J, LJ ,RJ
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LJ = RJ
LJ 6= RJ

(0a) LJ ,RJ are singletons and LJ = RJ

X is homeomorphic to a circle.

J

LJ = RJ

M(X ) = {M ⊆ X : M is a finite set or a Cantor set or X}
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(0b) LJ ,RJ are singletons and LJ 6= RJ

X is homeomorphic to a compact interval.

J

LJ RJ

M(X ) = {M ⊆ X : M is a finite set or a Cantor set}
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(1a) LJ is a nondegenerate continuum, RJ is a singleton
and RJ ⊂ LJ

J

LJ

RJ

Warsaw circle
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RJ ⊂ LJ
RJ ∩ LJ = ∅

(1a) LJ is a nondegenerate continuum, RJ is a singleton
and RJ ⊂ LJ

Theorem

M(X ) =
⋃
{M (LJ ∪ A) : A is an arc, RJ ⊆ A ⊆ RJ ∪ J}

Corollary
Moreover, if LJ is a local dendrite, then M ⊆ X is a minimal set
on X if and only if one of the following conditions holds:

M is a finite set;
M is a union of finitely many pairwise disjoint circles;
M is a cantoroid and M ⊆ LJ ∪ A for an arc A ⊆ RJ ∪ J
containing RJ .
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RJ ⊂ LJ
RJ ∩ LJ = ∅

(1a) Example: X = Warsaw circle

J

LJ

RJ

A

M

M ∈M(X ) ⇐⇒ M is a finite or Cantor set in LJ ∪ A
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RJ ⊂ LJ
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(1b) LJ is a nondegenerate continuum, RJ is a singleton
and RJ ∩ LJ = ∅

J

LJ

RJ

Topologist’s sine curve

Michaela Mihoková Minimal sets on continua with dense free intervals



Introduction and preliminaries
LJ , RJ are singletons

LJ is a nondegenerate continuum and RJ is a singleton
LJ , RJ are nondegenerate continua

RJ ⊂ LJ
RJ ∩ LJ = ∅

(1b) LJ is a nondegenerate continuum, RJ is a singleton
and RJ ∩ LJ = ∅

J

LJ

RJ

Michaela Mihoková Minimal sets on continua with dense free intervals



Introduction and preliminaries
LJ , RJ are singletons

LJ is a nondegenerate continuum and RJ is a singleton
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RJ ⊂ LJ
RJ ∩ LJ = ∅

(1b) LJ is a nondegenerate continuum, RJ is a singleton
and RJ ∩ LJ = ∅

Theorem

M(X ) =M (LJ) tM (J ∪ RJ)

andM (J ∪ RJ) is the system of all finite and Cantor subsets
of J ∪ RJ .

Michaela Mihoková Minimal sets on continua with dense free intervals



Introduction and preliminaries
LJ , RJ are singletons

LJ is a nondegenerate continuum and RJ is a singleton
LJ , RJ are nondegenerate continua

RJ ⊂ LJ
RJ ∩ LJ = ∅

(1b) LJ is a nondegenerate continuum, RJ is a singleton
and RJ ∩ LJ = ∅

Corollary
Moreover, if LJ is a local dendrite, then M ⊆ X is a minimal set
on X if and only if exactly one of the following conditions holds:

M ⊆ LJ such that M is either a finite set or a cantoroid
or a union of finitely many pairwise disjoint circles;
M ⊆ J ∪ RJ such that M is either a finite set or a Cantor set.

Example: X = Topologist’s sine curve

M ∈M(X ) ⇐⇒

{
M is a finite or Cantor set in LJ ,

M is a finite or Cantor set in J ∪ RJ .
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RJ ∩ LJ 6= ∅
RJ ∩ LJ = ∅

(2a) LJ ,RJ are nondegenerate continua and RJ ∩ LJ 6= ∅

Theorem

M(X ) =M (LJ ∪ RJ) tM (J)

andM(J) is the system of all finite and Cantor subsets of J.

Corollary
Moreover, if LJ ,RJ are local dendrites, then M ⊆ X is a minimal
set on X if and only if exactly one of the following conditions holds:

1 M ⊆ LJ ∪ RJ such that M is either a finite set or a cantoroid
or a union of finitely many pairwise disjoint circles;

2 M ⊆ J such that M is either a finite set or a Cantor set.
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(2a) Example

J

LJ = RJ

M ∈M(X ) ⇐⇒

{
M is a finite or Cantor set in LJ ∪ RJ ,

M is a finite or Cantor set in J.
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(2b) LJ ,RJ are nondegenerate continua and RJ ∩ LJ = ∅

J

LJ RJ

Double topologist’s sine curve
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RJ ∩ LJ 6= ∅
RJ ∩ LJ = ∅

(2b) LJ ,RJ are nondegenerate continua and RJ ∩ LJ = ∅

Notation
For metrizable (not necessarily compact) disjoint spaces Y and Z ,
the symbolM∗(Y ;Z ) denotes the system of all minimal sets M
on Y ∪ Z such that the cardinality of M ∩ Y is equal
to the cardinality of M ∩ Z ,

card(M ∩ Y ) = card(M ∩ Z ).

Theorem
1 M(X ) ⊆M(J) tM (LJ) tM (RJ) tM∗ (LJ ;RJ) ,

2 M(X ) ⊇M(J) tM (LJ) tM (RJ)

andM(J) is the system of all finite and Cantor subsets of J.

Michaela Mihoková Minimal sets on continua with dense free intervals



Introduction and preliminaries
LJ , RJ are singletons

LJ is a nondegenerate continuum and RJ is a singleton
LJ , RJ are nondegenerate continua

RJ ∩ LJ 6= ∅
RJ ∩ LJ = ∅

(2b) LJ ,RJ are nondegenerate continua and RJ ∩ LJ = ∅

Corollary
Moreover, if LJ ,RJ are local dendrites, then:

if M ⊆ X is a minimal set on X , then exactly one
of the following conditions holds:

1 M ⊆ J and M is either a finite set or a Cantor set;
2 either M ⊆ LJ or M ⊆ RJ such that M is either a finite set

or a cantoroid or a union of finitely many pairwise disjoint
circles;

3 M ⊆ LJ ∪ RJ , the sets M ∩ LJ , M ∩ RJ have the same
cardinalities and M is either a finite set or a cantoroid
or a union of finitely many pairwise disjoint circles.

if any of the conditions (1), (2) holds, then M is a minimal set
on X .
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RJ ∩ LJ 6= ∅
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(2b) Example 1: X = Double topologist’s sine curve

J

LJ RJ

M(X ) =M(J) tM (LJ) tM (RJ) tM∗ (LJ ;RJ)
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RJ ∩ LJ 6= ∅
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(2b) Example 2

XL XR

LJ RJ

M(X ) =M(J) tM (LJ) tM (RJ)
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RJ ∩ LJ 6= ∅
RJ ∩ LJ = ∅

(2b) Question

Is there a space X = LJ ∪ J ∪ RJ (with LJ and RJ disjoint
nondegenerate) such that

M(X ) ∩M∗ (LJ ;RJ) 6= ∅,

but

M(X ) 6⊇ M∗ (LJ ;RJ)

?
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Thanks for your
attention!
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