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1. Step skew products
T1,T2 : I → I continuous (I = [0, 1])
x0 ∈ I ... we decide, by tossing a coin, whether we take

x1 = T1(x0) or x1 = T2(x0)
... after (n − 1) steps arriving at xn−1 we again decide,

tossing a coin, whether we take xn = T1(xn−1) or
xn = T2(xn−1)

(xn)∞n=0 ... trajectory of x0 in the nonautonomous system
given by the sequence of maps determined by the coin
tossing, each of the maps being either T1 or T2

Since any choice of ω = ω0ω1ω2 · · · ∈ Σ+
2 = {1, 2}Z+ yields a

nonautonomous system given by the sequence of maps
Tω0 ,Tω1 ,Tω2 , . . . , all such nonautonomous systems are in a sense
present in the skew product

(ω, x) 7→ (S(ω),Tω0(x))

where S is the shift transformation Σ+
2 → Σ+

2 , (Sω)n = ωn+1.



1. Step skew products

Straightforward generalization:
I T1,T2, . . . ,Tn : I → I continuous (instead of T1,T2)
I Σ+

n = {1, 2, . . . , n}Z+ (instead of Σ+
2 )

I subshift B ⊆ Σ+
n (instead of full shift Σ+

n )
The step skew product F : B × I → B × I is defined by

F (ω, x) = (S(ω),Tω(x))

where S is the shift transformation on B ⊆ Σ+
n and the continuous

fibre map Tω depends only on the beginning coordinate of ω, i.e.

ω = ω0ω1ω2 · · · ∈ B =⇒ Tω = Tω0 ∈ {T1,T2, . . . ,Tn}

Clearly, F is continuous (B × I is endowed with the max metric).



1. Step skew products
Dynamics of step skew products is usually studied under additional
assumptions on the fibre maps. For instance, the fibre maps are:
I interval C 1-maps (e.g. Kudryashov 2010)
I interval C 2-diffeomorphisms fixing the endpoints of I (e.g.

Ilyashenko 2010)
I interval diffeomorphisms mapping I strictly inside itself (e.g.

Kleptsyn and Volk 2014)
I interval C 1-diffeomorphisms onto their images (e.g. Gelfert

and Oliveira 2020)
I interval maps T1,T2 fixing the endpoints of I , T1 above and

T2 below the diagonal in the interior of I (e.g. piecewise linear
homeomorphisms in Alseda and Misiurewicz 2014,
diffeomorphisms in Gharaei and Homburg 2017)

I circle C 1-diffeomorphisms (e.g. Díaz, Gelfert and Rams, e.g.
2019)

I circle rotations (e.g. Falcó 1998, Mazur and Oprocha 2015)



2. Specification property

Dyn. system (Y ,R) ... Y compact metric space with metric d ,
R : Y → Y continuous

(Y ,R) has the specification property, if
(∀ε > 0) (∃M = M(ε)) :
(∀k ≥ 2) (∀(y1, n1), (y2, n2), . . . , (yk , nk) ∈ Y × N) (∃u ∈ Y ) :

R rk (u) = u and
d(R i (yj),R

rj−1+i (u)) ≤ ε for 0 ≤ i < nj and 1 ≤ j ≤ k
where r0 = 0 and rj = n1 + n2 + . . .+ nj + jM for 1 ≤ j ≤ k .

We call M the gap length for the given ε.

Thus, M = M(ε) is such that for every finite family of orbit
segments, if all the gap lengths are prescribed to be equal to M, an
ε-tracing periodic point u does exist.

(equivalent with the definition in which all the gap lengths
are prescribed and greater than or equal to M)



2. Specification property
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2. Specification property

The specification property was introduced by Bowen. Sometimes it
is called periodic specification property (to distinguish from some
variants introduced later).

specification property =⇒ dense subset of periodic points
topological mixing

On the interval (Blokh):

specification property ⇐⇒ topological mixing



3. Finite nonautonomous systems and non-shrinking of
intervals

T : [0, 1]→ [0, 1]
... piecewise monotone, if ∃ finite partition P of [0, 1] into

intervals, such that T |P is monotone for every P ∈ P
... expanding, if ∃α > 1 such that |T (x)− T (y)| ≥ α|x − y |

holds for all x , y which are in the same element of P
(α = the expansion rate)

Nonautonomous system
... sequence (fi )

∞
i=0 of maps [0, 1]→ [0, 1]

(finite, if only finitely many different maps occur)
f ij := fj+i−1 ◦ · · · ◦ fj+1 ◦ fj , in particular f i0 = fi−1 ◦ · · · ◦ f1 ◦ f0
|J| = length of an interval J



3. Finite nonautonomous systems and non-shrinking of
intervals

Theorem 1
T1, . . . ,Tn : [0, 1]→ [0, 1] expanding, piecewise monotone, cont.

Then

∀ε > 0 ∃γ > 0 ∀ nonaut. system (fi )
∞
i=0 with fi ∈ {T1, . . . ,Tn} ∀i :

U interval, |U| ≥ ε =⇒ inf
i≥0
|f i0 (U)| ≥ γ.



3. Finite nonautonomous systems and non-shrinking of
intervals

Strategy of proof
1. Fix ε > 0 (we need γ > 0 s.t. if |U| ≥ ε then its trajectory

consists of intervals whose lengths are ≥ γ).
2. α := min{exp. rates of T1, . . . ,Tn} > 1 ⇒ ∃m : αm > 2
3. Each Ti has finitely many critical points. Therefore:
4 = (H1, . . . ,Hm) ∈ {T1, . . . ,Tn}m ⇒ ∃β4 > 0 ∀ |U| ≤ β4
which has a critical point of H1 as endpoint, we have:
U ................................. has no crit. pt. of H1 in its interior
H1(U) .......................... has no crit. pt. of H2 in its interior
H2(H1(U)) ................... has no crit. pt. of H3 in its interior

...
(Hm−1 ◦ · · · ◦ H1)(U) ... has no crit. pt. of Hm in its interior

Note: |(Hm ◦ · · · ◦ H1)(U)| ≥ αm|U| > 2|U|
4. β := min4 β4 (β > 0 because finitely many m-tuples 4)
5. γ := min( ε2 , β) ... one can show that γ is good.



3. Finite nonautonomous systems and non-shrinking of
intervals

Example 2
All Tj are expanding (αj > 1). Theorem 1 does not work if αj ≥ 1.
To construct a counterexample, fix a small positive irrational ξ.

ϕ

ξ

1 − ξ

f

1 − 2ξ

2ξ

g

1/4 1/2

1/2

Some slopes are (in absolute value) > 1, but some are = 1.

(fi )
∞
i=0 = ϕ,ϕ, . . . , ϕ︸ ︷︷ ︸

k1

, ψ1, ϕ, ϕ, . . . , ϕ︸ ︷︷ ︸
k2

, ψ2, ϕ, ϕ, . . . , ϕ︸ ︷︷ ︸
k3

, ψ3, . . .

where each ψi is either f or g . The sequence k1, k2, k3, . . . and the
maps ψi ∈ {f , g} can be chosen in such a way that

for U = [0, ξ] we have lim
n→∞

|f n0 (U)| = 0.



4. Main result
Theorem 3
T1,T2, . . . ,Tn : [0, 1]→ [0, 1] piecewise monotone, continuous,

expanding, surjective,
B ⊆ Σ+

n a subshift which has the specification property and
contains a periodic point α = (α0α1 . . . αp−1)∞ such that
Tαp−1 ◦ · · · ◦ Tα1 ◦ Tα0 is topologically mixing.

Then
the step skew product on B × [0, 1], F (ω, x) = (S(ω),Tω(x)), has
the specification property.
Strategy of proof
1. Fix ε > 0 (we need M = M(ε), gap length for F and ε)
2. Thm 1 ⇒ ∃γ s.t. vertical int. |U| ≥ ε never shrinks below γ

3. T̃ := Tαp−1 ◦ · · · ◦ Tα0 mixing, piec. monot. ⇒ ∃m s.t.
T̃m(V ) = [0, 1] for every vertical int. |V | ≥ γ

4. Spec. prop. in B ⇒ ∃K = K (ε), gap length for S |B and ε
5. M := mp + 2K ... can be shown to be gap length for F and ε



4. Main result
Corollary 4
T1,T2, . . . ,Tn : [0, 1]→ [0, 1] piecewise monotone, continuous,

expanding, mixing ,
B ⊆ Σ+

n a subshift which has a fixed point.
Then

the corresponding step skew product has the specification property
if and only if the subshift has the specification property.

Remark (Bertrand)
A subshift B has the specification property ⇐⇒ it has a uniform
transition length, meaning that ∃ a positive integer M s.t.

(∀B-words u, v)(∃B-word t of length M)(utv is a B-word).


