Lyapunov non-typical behavior for cocycles through the lens of semigroup actions

Paulo Varandas

Federal University of Bahia & FCT - University of Porto

MOTIVATION

- Birkhoff non-typical behavior
- Furstenberg & Oseledets Theorems
- Finitely generated semigroup actions

MAIN RESULTS

- Statements
- Some remarks

MOTIVATION

- Birkhoff non-typical behavior
- Furstenberg & Oseledets Theorems
- Finitely generated semigroup actions

Birkhoff 'non-typical' behavior

 (X, μ) probability space

 $f: X \to X$ measure-preserving map

 $\psi:X\to\mathbb{R}$ observable

THEOREM (Birkhoff 31') If $\psi \in L^1(\mu)$ then the limit

$$\tilde{\psi}(x) := \lim_{n \to \infty} \frac{1}{n} \sum_{i=0}^{n-1} \psi(f^{j}(x))$$

exists for μ -almost every $x \in X$, and $\int \tilde{\psi} d\mu = \int \psi d\mu$.

DEF: A point $x \in X$ is 'non-typical' (or *irregular*) with respect to ψ if the limit $\lim_{n\to\infty} \frac{1}{n} \sum_{i=0}^{n-1} \psi(f^j(x))$ does not exist

DEF: The set of ψ -irregular points is denoted by $l_{\psi}(f)$

Birkhoff 'non-typical' behavior

Example

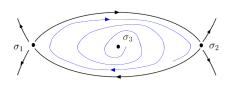


Figure: Irregular behavior on Bowen's eye

 $oxed{A}$ DICHOTOMY: (Takens 94', 08', Barreira, Schmeling 00', Chen, Küpper, Shu 05', Li, Wu 13',...) If $f:\mathbb{S}^1 o\mathbb{S}^1$ is C^{1+lpha} -expanding map and $\psi:\{0,1\}^\mathbb{N} o\mathbb{R}$ is

continuous then

uous then
$$I_{\psi}(f)=\emptyset$$
 OR $I_{\psi}(f)$:
Full topological entropy
Full Hausdorff dim
Baire generic

RMK: Many works replacing *expansion* by *shadowing*, *specification*, or by weaker versions of these mechanisms.

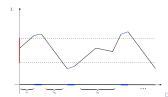
Birkhoff 'non-typical' behavior: some ideas

Existence of irregular points:

- find μ_1, μ_2 ergodic so that $\int \psi d\mu_1 \neq \int \psi d\mu_2$
- find x_i so that $\frac{1}{n} \sum_{j=0}^{n-1} \psi(f^j(x_i)) \to \int \psi \, d\mu_i \ (i=1,2)$
- uniform continuity + specification ⇒ there exists z = lim_n z_n
 where the orbit of z_n approximates well the finite orbits of x₁
 and x₂ alternatively

$$\underbrace{00\cdots0}_{n_1}\underbrace{*\cdots*}_{\leqslant p}\underbrace{111\cdots1}_{n_2}\underbrace{*\cdots*}_{\leqslant p}\underbrace{0000\cdots0}_{n_3}\underbrace{*\cdots*}_{\leqslant p}\cdots$$

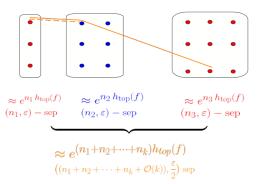
$$\underbrace{n_1\ll n_2\ll n_3\ll n_4\ll \dots}_{\text{(arbitrary choice)}}$$



Birkhoff 'non-typical' behavior: some ideas

Existence of 'many' irregular points:

- if μ_1, μ_2 ergodic large entropy s.t. $\int \psi d\mu_1 \neq \int \psi d\mu_2$
- find many points x_i so that $\frac{1}{n} \sum_{i=0}^{n-1} \psi(f^j(x_i)) \to \int \psi d\mu_i$
- uniform continuity + specification ⇒ there exist many irregular points $z = \lim_n z_n$ as before



• Similar reasoning yields a Baire generic set

Noncommuting random products

$$G_1 = \{A_1, A_2, \dots, A_\kappa\} \subset SL(d, \mathbb{R})$$

$$\mu=
u^{\mathbb{Z}}$$
 Bernoulli probability measure on $\Sigma_{\kappa}:=\{1,2,\ldots,\kappa\}^{\mathbb{Z}}$

THEOREM (Furstenberg 63') Assume that:

- 1. the semigroup generated by G_1 is not contained in a compact subgroup of $SL(d,\mathbb{R})$,
- 2. the cocycle is strongly irreducible on $supp \nu$ (ie, there is no finite family of proper subspaces of \mathbb{R}^d invariant by A_i for every $i \in supp \nu$).

Then
$$\lambda_+(A, \nu) > 0$$

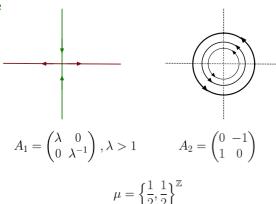
Top Lyapunov exponent, proved to exist by Furstenberg and Kesten 60':

$$\lambda_+(A, \nu) = \lim_{n \to \infty} \frac{1}{n} \log \|A_{\omega_n} \dots A_{\omega_2} A_{\omega_1}\| \quad \text{for } \mu - \text{a.e. } \omega$$

RMKS:

 Non-compactness and strong irreducibility are necessary conditions on the set of generating matrices

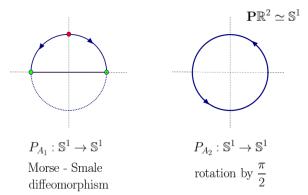
Example



RMKS:

- Non-compactness and strong irreducibility are necessary conditions on the set of generating matrices
- Projective action by bi-Lipschitz homeomorphisms on $X = \mathbf{P}\mathbb{R}^d$

Example



RMKS:

- Non-compactness and strong irreducibility are necessary conditions on the set of generating matrices
- Projective action by bi-Lipschitz homeomorphisms on $X = \mathbf{P}\mathbb{R}^d$
- Linear cocycles coded by skew-products

$$F_{A}: \quad \Sigma_{\kappa} \times \mathbb{R}^{d} \longrightarrow \quad \Sigma_{\kappa} \times \mathbb{R}^{d}$$

$$(x, v) \mapsto (f(x), A(x) \cdot v),$$

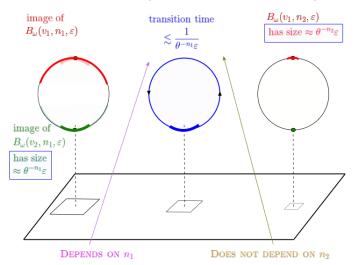
$$P_{A}: \quad \Sigma_{\kappa} \times \mathbf{P} \mathbb{R}^{d} \longrightarrow \quad \Sigma_{\kappa} \times \mathbf{P} \mathbb{R}^{d}$$

$$(x, v) \mapsto (f(x), \frac{A(x) \cdot v}{\|A(x) \cdot v\|}),$$

BEWARE: In general P_A does not satisfy the specification property (or any nonuniform version)

Sumi- V.-Yamamoto 16', Bomfim-Torres-V. 21'

Cartoon: Lack of specification for skew-products



ADVERTISEMENT: See Snoha's talk for positive results on the specification property for skew products of piecewise expanding

A multiplicative ergodic theorem

 (X,μ) probability space, $f\colon X\to X$ invertible, measure-preserving $A\colon X\to \mathrm{SL}(d,\mathbb{R})$ a measurable matrix-valued map

THEOREM (Oseledets 68') If $\log ||A^{\pm 1}|| \in L^1(\mu)$ then for μ -a.e. x there exist $1 \leq k(x) \leq d$ and:

• A-invariant splitting, measurable on x,

$$\Sigma_{\kappa} \times \mathbb{R}^d = E_x^1 \oplus E_x^2 \oplus \cdots \oplus E_x^{k(x)},$$

real numbers (Lyapûnov êxponents)

$$\lambda_1(A, f, x) > \lambda_2(A, f, x) > \dots > \lambda_{k(x)}(A, f, x)$$

s.t. if $A^{(n)}(x) = A(f^{n-1}(x)) \cdots A(f(x))A(x)$ then

$$\lambda_i(A, f, x) = \lim_{n \to \pm \infty} \frac{1}{n} \log ||A^{(n)}(x)v_i||, \quad \forall v_i \in E_x^i \setminus \{\vec{0}\}$$

RMKS: \circ If μ is ergodic, the Lyapunov exponents are a.e. constant $\circ \lambda_1(A, f, \mu) = \lambda_+(A, f, \mu)$

QUESTION: What can one say about the sets:

$$\left\{x \in X \colon \lim_{n \to \infty} \frac{1}{n} \log \|A^n(x)\| \text{ does not exist}\right\}$$

(points in X that are irregular for the top Lyapunov exponent)

$$\left\{\mathbf{v} \in \mathbf{P}\mathbb{R}^d \colon \lim_{n \to \infty} \frac{1}{n} \log \|A^n(x)\mathbf{v}\| \text{ does not exist, for some } x\right\}$$

(directions along which there exists irregular Lyapunov behavior)

$$\left\{v \in \mathbf{P}\mathbb{R}^d : \lim_{n \to \infty} \frac{1}{n} \log \|A^n(\mathbf{x})v\| \text{ does not exist}\right\}$$

(Lyapunov irregular directions with respect to a fixed x)

$$\left\{ x \in X : \left\{ v \in \mathbf{P}\mathbb{R}^d : \lim_{n \to \infty} \frac{1}{n} \log \|A^n(\mathbf{x})v\| \text{ does not exist} \right\} \text{ is 'large'} \right\}$$

(Points in X whose set of Lyapunov irregular directions is large)

Finitely generated semigroup actions

X compact metric space

 $\psi:X o\mathbb{R}$ continuous observable

 $G_1 = \{id, f_1, f_2, \dots, f_\kappa\}$ bi-Lipschitz homeomorphisms on X

$$\textit{G}_{\textit{n}} = \{\textit{g}_{\omega_{\textit{n}}} \circ \cdots \circ \textit{g}_{\omega_{2}} \circ \textit{g}_{\omega_{1}} \colon \textit{g}_{\omega_{\textit{j}}} \in \textit{G}_{1}\}$$

 $G = \bigcup_{n\geqslant 1} G_n$ semigroup

QUESTION: What can one say about the convergence of the sequence

$$\frac{1}{n}\sum_{j=0}^{n-1}\psi(g_{\omega_j}\circ\cdots\circ g_{\omega_2}\circ g_{\omega_1}(x))$$

with respect to: (i) points in X, (ii) elements in $\omega \in \{1, 2, \dots, \kappa\}^{\mathbb{N}}$ which code the paths on the semigroup G

N.B. We do not consider pointwise ergodic theorems for the semigroup action (e.g. spherical averaging in free groups, ...)

ENTROPY:

X compact metric space

 $G_1 = \{ \mathit{id}, g_1, g_2, \ldots, g_\kappa \}$ continuous, $G = \bigcup_{n \geqslant 1} G_n$ semigroup

- $x, y \in X$ are (n, ε) -separated along the path $g_{\omega_n} \circ \cdots \circ g_{\omega_2} \circ g_{\omega_1}$ if there exists $1 \leqslant j \leqslant n$ s.t. $d(g_{\omega}^j(x), g_{\omega}^j(y)) > \varepsilon$
- Entropy of infinite path $\mathcal{F}_{\omega}=(g_{\omega}^{j})_{j}$ in G (Kolyada-Snoha 96'):

$$h(\mathcal{F}_{\omega}) = \lim_{\varepsilon \to 0} \limsup_{n \to \infty} \frac{1}{n} \log s(\omega, n, \varepsilon)$$

where $s(\omega, n, \varepsilon) = \max$ card. of (n, ε) -separated points along path

• GLW-entropy of semigroup action (Ghys-Langevin-Walczak 88'):

$$h^{GLW}(\mathbb{S}) = \lim_{\varepsilon \to 0} \limsup_{n \to \infty} \frac{1}{n} \log s(G, n, \varepsilon)$$

where $s(G, n, \varepsilon) = \max$ card. of points separated by G_n elements

• B-entropy of free semigroup action (Bufetov 99'):

$$h^{B}(\mathbb{S}) = \lim_{\varepsilon \to 0} \limsup_{n \to \infty} \frac{1}{n} \log \left(\frac{1}{\kappa^{n}} \sum_{g \in G_{n}} s(\omega, n, \varepsilon) \right)$$

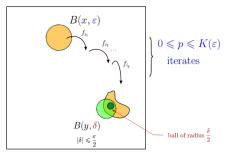
MAIN RESULTS

(joint with G. Ferreira - UFMA, Brazil)

LINEAR COCICLES & SEMIGROUP ACTIONS

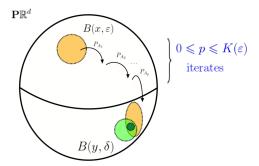
$$G_1 = \{id, f_1, f_2, \dots, f_\kappa\}$$
 continuous maps on compact metric X $G_n = \{g_{\omega_n} \circ \dots \circ g_{\omega_2} \circ g_{\omega_1} \colon g_{\omega_j} \in G_1\}$ $G = \bigcup_{n \ge 1} G_n$ semigroup

DEF: The semigroup action generated by G_1 has frequent hitting times if for any $\varepsilon > 0$ there exists $K(\varepsilon) > 0$ so that for any balls (B_1, B_2) with $|B_1| = \varepsilon$ and $0 < |B_2| \leqslant \frac{\varepsilon}{2}$ there exists $0 \leqslant p \leqslant K(\varepsilon)$, an element $\underline{\omega} \in \Sigma_{\kappa} := \{1, 2, \dots, \kappa\}^{\mathbb{N}}$ and a ball $B_2' \subset B_2$ of radius $|B_2|/2$ so that $f_{\underline{\omega}}^p(B_1) \supset B_2'$.



$$G_1 = \{A_1, A_2, \ldots, A_\kappa\} \subset SL(d, \mathbb{R})$$

DEF: The semigroup generated by G_1 is strongly projectively accessible the semigroup generated by the projective linear maps satisfies the frequent hitting times condition.



LEMMA: If $G_1 = \{f_1, f_2, \dots, f_{\kappa}\}$ admits a subset \hat{G}_1 which acts minimaly by isometries then the semigroup action generated by G_1 satisfies the frequent hitting times property.

Examples

The semigroup action generated by G_1 has frequent hitting times:

- $G_1 = \{f_1, f_2, \dots, f_{\kappa}\}$ homeomorphisms on \mathbb{T}^d $(d \geqslant 1)$ where some $f_i: \mathbb{T}^d \to \mathbb{T}^d$ is a irrational translation
- $G_1 = \{f_1, f_2, \dots, f_\kappa\}$ homeomorphisms on \mathbb{T}^d $(\kappa \geqslant d \geqslant 1)$ where $f_{i}(x) = x + v_{i}, v_{i} \notin \mathbb{Q}^{d}$ and $\{v_{1}, \dots, v_{d}\}$ base in \mathbb{R}^{d}
- $G_1 = \{f_1, f_2\}$ where $f_i : \mathbf{P}\mathbb{R}^3 \to \mathbf{P}\mathbb{R}^3$ are projective maps $(\alpha, \beta \notin \mathbb{Q})$

$$\begin{pmatrix} \cos \alpha & -\sin \alpha & 0 \\ \sin \alpha & \cos \alpha & 0 \\ 0 & 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \beta & -\sin \beta \\ 0 & \sin \beta & \cos \beta \end{pmatrix} \in SO(3, \mathbb{R})$$

• $G_1 = \{f_1\}, f_1 : \mathbf{P}\mathbb{R}^4 \to \mathbf{P}\mathbb{R}^4$ projective map (Baire generic & full Lebesgue on $\{(a, b, c, d): a^2 + b^2 = 1, c^2 + d^2 = 1\}$

$$\begin{pmatrix} a & 0 & -b & 0 \\ 0 & c & 0 & -d \\ b & 0 & a & 0 \\ 0 & d & 0 & c \end{pmatrix} \in \mathsf{Sp}(4,\mathbb{R})$$

Linear cocycles

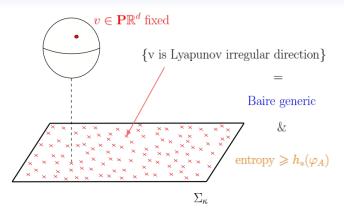
THEOREM 1 Assume that the semigroup generated by $G_1 = \{A_1, A_2, \dots, A_\kappa\} \subset SL(d, \mathbb{R})$

- 1. is not contained in a compact subgroup of $SL(d,\mathbb{R})$,
- 2. is strongly projectively accessible

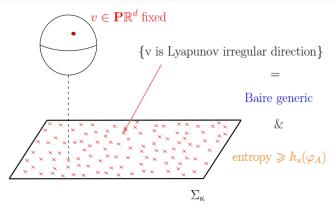
Then for each $v \in \mathbf{P}\mathbb{R}^d$ there exists $\mathcal{R}_v \subset \Sigma_\kappa$ Baire generic, with entropy at least $h_*(\varphi_A)$ s.t. for every $\omega \in \mathcal{R}_v$,

$$\liminf_{n\to\infty} \frac{1}{n} \log \|A^n(\omega)v\| < \limsup_{n\to\infty} \frac{1}{n} \log \|A^n(\omega)v\| \quad (\star)$$

CARTOON VERSION:



CARTOON VERSION:

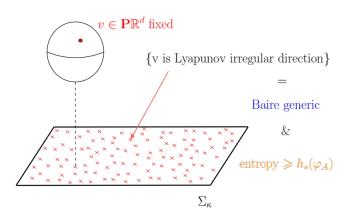


$$arphi_{\mathcal{A}}: \Sigma_{\kappa} imes \mathbf{P} \mathbb{R}^d o \mathbb{R}$$
 given by $arphi_{\mathcal{A}}(\omega, v) = \log rac{\|A(\omega)v\|}{\|v\|}$

$$h_*(\varphi_A) = \sup \Big\{ c \geqslant 0 \colon \text{there exist } \mu_1, \mu_2 \in \mathcal{M}_{erg}(P_A) \text{ so that } \Big\}$$

$$h_{\pi_*\mu_i}(\sigma)\geqslant c$$
 and $\int arphi_A\,d\mu_1<\int arphi_A\,d\mu_2igg\}_{\mathbb{R}}$

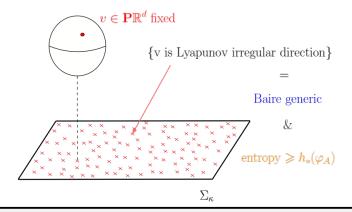
THEOREM 1:



Rмк:

$$h_*(arphi_{\mathcal{A}})\geqslant \sup\left\{h_
u(\sigma)\colon
u\in\mathcal{M}_{ ext{erg}}(\sigma) ext{ and } \lambda_+(\mathcal{A},
u)>\inf_{\eta\in\mathcal{M}_{ ext{erg}}(\sigma)}\lambda_+(\mathcal{A},\eta)
ight\}$$

THEOREM 1:



COROLLARY 1: Under the previous assumptions, there exists a Baire residual subset $\mathcal{R} \subset \Sigma_{\kappa}$ and a dense subset $\mathcal{D} \subset \mathbf{P}\mathbb{R}^d$ so that (\star) holds for every $\omega \in \mathcal{R}$ and every $v \in \mathcal{D}$.

THEOREM 2: Let $A: \Sigma_{\kappa} \to SL(3,\mathbb{R})$ be a locally constant and hyperbolic cocycle, and $\Sigma_{\kappa} \times \mathbb{R}^3 = E^s \oplus E^u$ satisfy dim $E^s = 2$. There is a C^0 -open neighborhood $\mathcal{U} \subset C_{\text{loc}}(\Sigma_{\kappa}, SL(3,\mathbb{R}))$ of A and C^0 -open sets $\mathcal{U}_1 \cup \mathcal{U}_2$ dense in \mathcal{U} so that

- 1. every $B \in \mathcal{U}_1$ admits a continuous splitting $\mathbb{R}^3 = E^u_{B,\omega} \oplus E^{s,1}_{B,\omega} \oplus E^{s,2}_{B,\omega}$, and there exists a C^0 -open and dense, full Haar measure subset $\mathcal{O} \subset \mathcal{U}_1$ s.t. if $B \in \mathcal{O}$ then the set of Lyapunov irregular points in Σ_{κ} is Baire generic and has full entropy
- 2. there exists a C^0 -Baire residual and full Haar measure subset $\mathcal{R} \subset \mathcal{U}_2$ s.t. if $B \in \mathcal{R}$ then there exists a Baire residual $S \subset \Sigma_{\kappa}$ and for each $\omega \in \mathcal{S}$ there is a dense $\mathcal{D}_{\omega} \subset \mathcal{E}_{\omega}^s$ s.t. for every $v \in \mathcal{D}_{\omega}$

$$\liminf_{n\to\infty}\frac{1}{n}\log\|B^n(\omega)v\|<\limsup_{n\to\infty}\frac{1}{n}\log\|B^n(\omega)v\|.$$

Related work:

- Previous results on irregular behavior for the *top Lyapunov* exponent of Hölder continuous cocycles by Herman 81', Furman 97' for cocycles over minimal homeomorphisms, by Tian 15', 17' for linear cocycles over mixing hyperbolic basic set for $C^{1+\alpha}$ diffeomorphism, and by Carvalho, V. 19' on Baire genericity of Birkhoff averages and top Lyapunov exponents
 - \longrightarrow informations on the shift space
- Díaz, Gelfert, Rams 19' use a notion of transitions on $SL(2,\mathbb{R})$ cocycles with the 'flavor' of frequent hitting times to study multifractal analysis of step SL(2,R) cocycles
- Previous results on Hölder cocycles (i) explore u.s.c. of $\mu \mapsto \lambda_+(A, f, \mu)$, (ii) bounded distortion results for linear cocycles by Kalinin 11'

Semigroup actions

THEOREM 3 Let X be a compact metric space and $\psi: X \to \mathbb{R}$ be a continuous observable. Assume that:

- 1. semigroup action by the bi-Lipschitz homeos $G_1=\{f_1,f_2,\ldots,f_\kappa\}$ has frequent hitting times
- 2. ψ is not a coboundary w.r.t. some f_i

Then:

$$I_{\psi}(\mathbb{S}) := \left\{ x \in X : \frac{1}{n} \sum_{j=0}^{n-1} \psi(g_{\omega}^{j}(x)) \text{ diverges along some path in G} \right\}$$

is Baire generic in X.

THEOREM 4 Let X be a compact metric space and ψ :

 $X \to \mathbb{R}$ be a continuous observable. Assume that:

- 1. semigroup action by the bi-Lipschitz homeos $G_1=\{f_1,f_2,\ldots,f_\kappa\}$ has frequent hitting times
- 2. $\varphi_{\psi}(\omega, x) := \psi(x)$ is not a coboundary w.r.t F Then

$$I_{\psi}(\mathbb{S}) := \left\{ x \in X : \frac{1}{n} \sum_{j=0}^{n-1} \psi(g_{\omega}^{j}(x)) \text{ diverges along some path in G} \right\}$$

satisfies:

$$h^{\mathit{GLW}}(\mathbb{S},\mathit{I}_{\mathbb{S}}(\psi))\geqslant H^{\mathsf{Pinsker}}(\psi)\quad\text{and}\quad h^{B}(\mathbb{S},\mathit{I}_{\mathbb{S}}(\psi))\geqslant h_{*}(\varphi_{\psi})$$

 $H^{\mathsf{Pinsker}}(\psi) = c$ iff for every $\varepsilon > 0$ there exist $\mu_1, \mu_2 \in \mathcal{M}_{\mathsf{erg}}(F)$ which distinguish ψ and $h_{\mu_i}(F \mid \sigma) > c - \varepsilon$ $h^{\mathsf{GLW}}(\mathbb{S}, \cdot) = \mathsf{entropy}$ 'coherent' to Ghys, Langevin, Walczak 88', Biś 04' $h^{\mathsf{B}}(\mathbb{S}, \cdot) = \mathsf{entropy}$ 'coherent' to Bufetov 99'

4□ ► 4□ ► 4 = ► 4 = ► 900

THEOREM 5 Let X be a compact metric space and ψ : $X \to \mathbb{R}$ be a continuous observable. Assume that:

- 1. semigroup action by the bi-Lipschitz homeos $G_1=\{f_1,f_2,\ldots,f_\kappa\}$ has frequent hitting times
- 2. $\varphi_{\psi}(\omega, x) := \psi(x)$ is not a coboundary w.r.t F
- 3. there exists $1 \leqslant i \leqslant \kappa$ so that f_i is minimal

Then:

- $h_I^{fiber}(\mathbb{S}, \psi) := \sup_{\omega \in \Sigma_\kappa} h_{I_\omega(\psi)}(\mathcal{F}_\omega) \geqslant H^{\mathsf{Pinsker}}(\psi)$ and
- $\{\omega \in \Sigma_{\kappa} \colon h_{l_{\omega}(\psi)}(\mathcal{F}_{\omega}) \geqslant H^{\mathsf{Pinsker}}(\psi)\}$ has entropy larger or equal than $H^{\mathsf{Pinsker}}_{\sigma}(\psi)$

 $H^{\sigma}(\psi) = c$ iff for every $\varepsilon > 0$ there exist $\mu_1, \mu_2 \in \mathcal{M}_{erg}(F)$ which distinguish ψ and $h_{\pi_*\mu_i}(\sigma) > c - \varepsilon$

FEW REMARKS

- variable transition times as in the gluing orbit property (or very weak specification)
- transition times much larger than all the orbit past
- synchronization between fiber and base dynamics in skew-products
- construction of shadowing orbits much different than specification/shadowing
- fibered entropy distribution principle
- relations between entropy of semigroups and skew-products

Thank you!

