Complexity of some orbit equivalence relations induced by homeomorphism groups

Benjamin Vejnar

Faculty of Mathematics and Physics
Charles University

Prague, June 14-18, 2021

Introduction

The aim of the talk:

1) to present a formal framework for classification results

Descriptive Set Theory

- Polish spaces / standard Borel spaces
- continuous / Borel mappings

Invariant Descriptive Set Theory:

- equivalence relations on standard Borel spaces
- Borel reductions

Introduction

The aim of the talk:

1) to present a formal framework for classification results

Descriptive Set Theory

- Polish spaces / standard Borel spaces
- continuous / Borel mappings

Invariant Descriptive Set Theory:

- equivalence relations on standard Borel spaces
- Borel reductions

2) apply to objects in Topological Dynamics and Continuum Theory.

Theorem

Interval dynamical systems (up to conjugacy) can be classified by countable structures (up to isomorphism).

Example of a classification result

Theorem

2-dimensional compact orientable manifolds without boundary are up to homeomorphism classified by non-negative integers.

Example of a classification result

Theorem

2-dimensional compact orientable manifolds without boundary are up to homeomorphism classified by non-negative integers.

There exists a natural mapping
$f: X=\{$ 2-dimensional compact orientable manifolds $\} \rightarrow Y=\{0,1, \ldots\}$ such that

- homeomorphic manifolds are mapped to equal numbers,
- non-homeomorphic manifolds are mapped to distinct numbers.

Complexity: reductions

Definition

- Let X, Y be sets,
- let E, F be equivalence relations (ER) on X and Y respectively.

A mapping $f: X \rightarrow Y$ is called a reduction from E to F if for every two points $x, x^{\prime} \in X$ we have $x E x^{\prime} \Longleftrightarrow f(x) F f\left(x^{\prime}\right)$.

Complexity: reductions

Definition

- Let X, Y be sets,
- let E, F be equivalence relations (ER) on X and Y respectively.

A mapping $f: X \rightarrow Y$ is called a reduction from E to F if for every two points $x, x^{\prime} \in X$ we have $x E x^{\prime} \Longleftrightarrow f(x) F f\left(x^{\prime}\right)$.

We can find a reduction from E to F iff $\# E$-equivalence classes $\leq \# F$-equivalence classes.

Complexity: reductions

Definition

- Let X, Y be sets,
- let E, F be equivalence relations (ER) on X and Y respectively.

A mapping $f: X \rightarrow Y$ is called a reduction from E to F if for every two points $x, x^{\prime} \in X$ we have $x E x^{\prime} \Longleftrightarrow f(x) F f\left(x^{\prime}\right)$.

We can find a reduction from E to F iff $\# E$-equivalence classes $\leq \# F$-equivalence classes.

Definition (natural reducibility)

- Let X, Y be Polish (standard Borel spaces),
- let E, F be ERs on X, Y respectively.

We say that E is Borel reducible to $F,\left(E \leq_{B} F\right)$, if there is a Borel measurable reduction from E to F.
We say that E is Borel bireducible with $F,\left(E \sim_{B} F\right)$, if $E \leq_{B} F$ and $F \leq{ }_{B} E$.

Example of a reduction

Theorem (essentially: Banach, Stone)

Homeomorphism ER on compact metrizable spaces is Borel reducible into isometry $E R$ of separable Banach spaces.

Example of a reduction

Theorem (essentially: Banach, Stone)

Homeomorphism ER on compact metrizable spaces is Borel reducible into isometry $E R$ of separable Banach spaces.

- $X=$ collection of all metrizable compacta
- $Y=$ collection of all separable Banach spaces
- $E=$ homeo ER on X
- $F=$ isometry ER on Y

$$
\begin{aligned}
f: & X \rightarrow Y \\
& K \mapsto C(K, \mathbb{R})
\end{aligned}
$$

- K homeo L iff $C(K, \mathbb{R})$ isometric to $C(L, \mathbb{R})$.

Example of a reduction

Theorem (essentially: Banach, Stone)

Homeomorphism ER on compact metrizable spaces is Borel reducible into isometry $E R$ of separable Banach spaces.

- $X=$ collection of all metrizable compacta
- $Y=$ collection of all separable Banach spaces
- $E=$ homeo ER on X
- $F=$ isometry ER on Y

$$
\begin{aligned}
f: & X \rightarrow Y \\
& K \mapsto C(K, \mathbb{R})
\end{aligned}
$$

- K homeo L iff $C(K, \mathbb{R})$ isometric to $C(L, \mathbb{R})$.
- f Borel?!

Coding

- a class of structures usually forms a proper class
- coding $=$ a set of representatives with a Polish topology (standard Borel structure) on this set
- necessary so that we can verify borelness of a reduction
- countable groups can be coded by functions $\mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}$ hence elements of $\mathbb{N}^{\mathbb{N} \times \mathbb{N}}$
- the hyperspace of the Hilbert cube $[0,1]^{\mathbb{N}}$ is a coding for all compact spaces

Coding

- a class of structures usually forms a proper class
- coding $=$ a set of representatives with a Polish topology (standard Borel structure) on this set
- necessary so that we can verify borelness of a reduction
- countable groups can be coded by functions $\mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}$ hence elements of $\mathbb{N}^{\mathbb{N} \times \mathbb{N}}$
- the hyperspace of the Hilbert cube $[0,1]^{\mathbb{N}}$ is a coding for all compact spaces
- usually, there are more natural coding for essentially the same thing
- all known natural coding of the same thing turned out to be equivalent (with respect to \sim_{B})

Orbit ERs

Suppose that a Polish group G acts continuously on a Polish space X. Then

$$
E_{G}^{X}=\{(x, g \cdot x): g \in G, x \in X\}
$$

is called an orbit ER.

Orbit ERs

Suppose that a Polish group G acts continuously on a Polish space X. Then

$$
E_{G}^{X}=\{(x, g \cdot x): g \in G, x \in X\}
$$

is called an orbit ER.

Theorem (Becker, Kechris)

For every Polish group G there is a G-action on a Polish space X such that $E_{G}^{Y} \leq_{B} E_{G}^{X}$ for every G-action on a Polish space Y.

Orbit ERs

Suppose that a Polish group G acts continuously on a Polish space X.
Then

$$
E_{G}^{X}=\{(x, g \cdot x): g \in G, x \in X\}
$$

is called an orbit ER.

Theorem (Becker, Kechris)

For every Polish group G there is a G-action on a Polish space X such that $E_{G}^{Y} \leq_{B} E_{G}^{X}$ for every G-action on a Polish space Y.

- denote by E_{G} any such E_{G}^{X} (unique up to \sim_{B})
- (Uspenskii) there is a universal Polish group G_{∞}.
- Every orbit ER can be Borel reduced to $E_{G_{\infty}}$ (this follows by Hjorth-Mackey: extensions of group actions)
- We consider these groups $G_{\infty}, S_{\infty}, F_{2}\left(F_{\infty}\right)$

Complexity degrees and benchmarks

- universal orbit ER: $E_{G_{\infty}}$
- the most complex among all orbit ERs
- isometry ER of complete separable metric spaces (Gao, Kechris)
- isometry ER of separable Banach spaces (Melleray)

Complexity degrees and benchmarks

- universal orbit ER: $E_{G_{\infty}}$
- the most complex among all orbit ERs
- isometry ER of complete separable metric spaces (Gao, Kechris)
- isometry ER of separable Banach spaces (Melleray)
- S_{∞}-universal orbit ER: $E_{S_{\infty}}$
- the most complex among all orbit ERs generated by the group S_{∞}
- isomorphism ER of countable graphs, linear orders
- isomorphism ER of most countable structures (Friedman, Stanley)

Complexity degrees and benchmarks

- universal orbit ER: $E_{G_{\infty}}$
- the most complex among all orbit ERs
- isometry ER of complete separable metric spaces (Gao, Kechris)
- isometry ER of separable Banach spaces (Melleray)
- S_{∞}-universal orbit ER: $E_{S_{\infty}}$
- the most complex among all orbit ERs generated by the group S_{∞}
- isomorphism ER of countable graphs, linear orders
- isomorphism ER of most countable structures (Friedman, Stanley)
- equality of countable sets: $E_{=+}$
- the most complex S_{∞}-orbit ER which is Π_{3}^{0}
- $\left(x_{n}\right),\left(y_{n}\right) \in \mathbb{R}^{\mathbb{N}}$ are equivalent iff $\left\{x_{n}: n \in \mathbb{N}\right\}=\left\{y_{n}: n \in \mathbb{N}\right\}$
- isomorphism ER of countable locally finite acyclic graphs

Complexity degrees and benchmarks

- universal orbit ER: $E_{G_{\infty}}$
- the most complex among all orbit ERs
- isometry ER of complete separable metric spaces (Gao, Kechris)
- isometry ER of separable Banach spaces (Melleray)
- S_{∞}-universal orbit ER: $E_{S_{\infty}}$
- the most complex among all orbit ERs generated by the group S_{∞}
- isomorphism ER of countable graphs, linear orders
- isomorphism ER of most countable structures (Friedman, Stanley)
- equality of countable sets: $E_{=+}$
- the most complex S_{∞}-orbit ER which is Π_{3}^{0}
- $\left(x_{n}\right),\left(y_{n}\right) \in \mathbb{R}^{\mathbb{N}}$ are equivalent iff $\left\{x_{n}: n \in \mathbb{N}\right\}=\left\{y_{n}: n \in \mathbb{N}\right\}$
- isomorphism ER of countable locally finite acyclic graphs
- universal countable $\mathrm{ER}=F_{2}$-universal orbit ER : $E_{F_{2}}$
- the most complex Borel ER with countable orbits (Feldman-Moore)
- isometry ER of Heine-Borel complete metric spaces

$$
E_{F_{2}} \succ B E_{=+} \dashv_{B} E_{S_{\infty}} \dashv_{B} E_{G_{\infty}}
$$

Homeomorphism ER and conjugacy ER

- X ...compact metrizable space
- $C(X) \ldots$ continuous selfmaps of X into itself
- $\mathcal{K}(X)$. . . hyperspace of compact subsets of X
- $\mathcal{H}(X) \ldots$ homeomorphisms of X onto itself

Homeomorphism ER and conjugacy ER

- X ... compact metrizable space
- $C(X) \ldots$ continuous selfmaps of X into itself
- $\mathcal{K}(X) \ldots$ hyperspace of compact subsets of X
- $\mathcal{H}(X) \ldots$ homeomorphisms of X onto itself
a) Conjugacy action

$$
\mathcal{H}(X) \curvearrowright C(X), \quad h \cdot f=h^{-1} \circ f \circ h
$$

b) 'Shift' (ambient homeomorphism) action

$$
\mathcal{H}(X) \curvearrowright \mathcal{K}(X), \quad h \cdot K=h(K)
$$

Classification results up to conjugacy

Theorem (Hjorth, 2000)

- Conjugacy $E R$ of invertible interval $D S \sim_{B} E_{S_{\infty}}$.
- Conjugacy $E R$ of invertible $D S$ on $[0,1]^{2}$ is $N O T \leq_{B} E_{S_{\infty}}$.

Classification results up to conjugacy

Theorem

2001 Camerlo-Gao: Conjugacy ER of (invertible) Cantor set DS
$\sim_{B} E_{S_{\infty}}$
2009 Clemens: Conjugacy of subshifts $\sim_{B} E_{F_{2}}$
2017 Kaya: Conjugacy ER of pointed invertible minimal Cantor DS
$\sim_{B} E_{=+}$
2017 Kaya: $E_{=+} \leq_{B}$ conjugacy of invertible minimal Cantor DS 2019 Kwietniak: Conjugacy $E R$ of shifts with specification is $\sim_{B} E_{F_{2}}$

Classification results up to conjugacy

Theorem (Bruin, V., 2019)
Conjugacy $E R$ of interval $D S \sim_{B} E_{S_{\infty}}$.

Proof.

\geq_{B} : Hjorth (even for homeos)
\leq_{B} : tent map example

Conjugacy ER on $C([0,1]) \leq_{B} E_{S_{\infty}}$ - proof

- Left strict local maximum of f.
- $M_{f} \ldots$ all left/right strict local max/min of f.
- $C_{f} \ldots$ the smallest set such that
a) $\{0,1\} \cup M_{f} \subseteq C_{f}$,
b) if $f^{-1}(y)$ contains an interval then $y \in C_{f}$,
c) if $n \in \mathbb{N}$ then $\operatorname{Acc}\left(\operatorname{Fix}\left(f^{n}\right)\right) \subseteq C_{f}$,
d) $f\left(C_{f}\right) \subseteq C_{f}$,
e) if $y \in C_{f}$ then $\operatorname{Acc}\left(f^{-1}(y)\right) \subseteq C_{f}$.

Conjugacy ER on $C([0,1]) \leq_{B} E_{S_{\infty}}$ - proof

- Left strict local maximum of f.
- $M_{f} \ldots$ all left/right strict local max/min of f.
- $C_{f} \ldots$ the smallest set such that
a) $\{0,1\} \cup M_{f} \subseteq C_{f}$,
b) if $f^{-1}(y)$ contains an interval then $y \in C_{f}$,
c) if $n \in \mathbb{N}$ then $\operatorname{Acc}\left(\operatorname{Fix}\left(f^{n}\right)\right) \subseteq C_{f}$,
d) $f\left(C_{f}\right) \subseteq C_{f}$,
e) if $y \in C_{f}$ then $\operatorname{Acc}\left(f^{-1}(y)\right) \subseteq C_{f}$.
- C_{f} is countable, it is determined only by the dynamics of f.
- The closure of C_{f} captures interesting dynamics of f.
- $D_{f} \ldots$ a countable invariant dense subset of $[0,1] \backslash \mathrm{CI}\left(C_{f}\right)$.
- $\left.\varphi: f \mapsto\left(C_{f} \cup D_{f},<\upharpoonright c_{f} \cup D_{f}, f \upharpoonright C_{f} \cup D_{f}\right)\right)$ is a reduction.
- Isomorphism ER of countable structures $\leq_{B} E_{S_{\infty}}$.

Hjorth's conjecture

Every ER which is induced by a continuous action of the group $\mathcal{H}([0,1])$ is Borel reducible to $E_{S_{\infty}}$, i.e.

$$
E_{\mathcal{H}([0,1])} \sim_{B} E_{S_{\infty}} .
$$

Classification results up to conjugacy

Theorem (Bruin, V., 2019)

Conjugacy $E R$ of Hilbert cube $D S \sim_{B} E_{G_{\infty}}$.

Proof.

- \leq_{B} : by Rosendal, Zielinski 2018
- \geq_{B} : Lemma: Let K be compact. Then there is a compactification of \mathbb{N} with remainder K. Every homeo of K can be extended to a homeo of the whole compactification.

Homeomorphism ER

'Shift' action $\mathcal{H}(X) \curvearrowright \mathcal{K}(X), \quad h \cdot K=h(K)$
The corresponding orbit equivalence relation is ambient homeomorphism.

Theorem (Kechris, Solecki)

Homeo $E R$ on compacta \leq_{B} orbit $E R$.

Proof.

- $Q:=[0,1]^{\mathbb{N}}$
- $Z:=\left\{x \in Q: x_{1}=0\right\}$.
- Z is so called Z-set in Q, thus for every compact $K, L \subseteq Z$, every homeo $h: K \rightarrow L$, can be extended to a homeo of Q
- id : $\mathcal{K}(Z) \rightarrow \mathcal{K}(Q)$ is the desired reduction.

Infinite-dimensional compacta

Definition

- continuum = compact and connected space
- locally connected (LC) = each point has small connected neighborhoods
- absolute retract $(\mathrm{AR})=$ retract of the Hilbert cube $[0,1]^{\mathbb{N}}$
$A R \Longrightarrow L C$ continuum \Longrightarrow continuum \Longrightarrow compactum

Infinite-dimensional compacta

Definition

- continuum = compact and connected space
- locally connected (LC) = each point has small connected neighborhoods
- absolute retract $(A R)=$ retract of the Hilbert cube $[0,1]^{\mathbb{N}}$
$A R \Longrightarrow L C$ continuum \Longrightarrow continuum \Longrightarrow compactum

Theorem

2016 Zielinski: Homeo $E R$ on compacta $\sim_{B} E_{G_{\infty}}$
2017 Chang, Gao: Homeo $E R$ on continua $\sim_{B} E_{G_{\infty}}$
2018 Cieśla: Homeo $E R$ on LC continua $\sim_{B} E_{G_{\infty}}$
2018 Krupski, V.: Homeo $E R$ on $A R \sim_{B} E_{G_{\infty}}$

Some methods

Theorem (Krupski, V.)

Homeo $E R$ on compacta \leq_{B} homeo $E R$ on $A R$.

Proof.

- Lemma: Let K be compact. Then there is a compactification of \mathbb{N} with remainder K. Every homeo of K can be extended to a homeo of the whole compactification.
- $f: \mathcal{K}(Q) \rightarrow \mathcal{K}(Q \times[0,1] \times[0,1])$

Low-dimensional topological classes

Definition

- 0-dimensional compacta
= closed subspaces of the Cantor set
- dendrites
= 1-dimensional AR
- rim-finite (RF) continua
$=$ have a base with finite boundaries
- rim-finite compacta
- $\operatorname{AR}\left(\mathbb{R}^{2}\right)=$ embeddable in the plane
a dendrite
a rim-finite continuum

Classification results up to homeomorphism

We are omitting: 'Homeomorphism ER on'

Theorem

2001 Camerlo, Gao: O-dimensional compacta $\sim_{B} E_{S_{\infty}}$ (Stone duality) 2005 Camerlo, Darji, Marcone: dendrites $\sim_{B} E_{S_{\infty}}$ (ternary relations) 2018 Krupski, V.: rim-finite continua $\sim_{B} E_{S_{\infty}}$ (n-ary relations)
2019 Dudák, $V .: \operatorname{AR}\left(\mathbb{R}^{2}\right) \sim_{B} E_{S_{\infty}}$ (reduction to the boundary)

Classification results up to homeomorphism

We are omitting: 'Homeomorphism ER on'

Theorem

2001 Camerlo, Gao: O-dimensional compacta $\sim_{B} E_{S_{\infty}}$ (Stone duality) 2005 Camerlo, Darji, Marcone: dendrites $\sim_{B} E_{S_{\infty}}$ (ternary relations) 2018 Krupski, V.: rim-finite continua $\sim_{B} E_{S_{\infty}}$ (n-ary relations)
2019 Dudák, $V .: \operatorname{AR}\left(\mathbb{R}^{2}\right) \sim_{B} E_{S_{\infty}}$ (reduction to the boundary)

2019 Dudák, $V .: \operatorname{AR}\left(\mathbb{R}^{3}\right), \operatorname{LC}\left(\mathbb{R}^{2}\right) \not \chi_{B} E_{S_{\infty}}$
2018 Krupski, V.: rim-finite compacta $\not \chi_{B} E_{S_{\infty}}$ (Hjorth: turbulence)
rim-finite cases:

Non-commutative topology: C*-algebras excursion

Gelfand duality: Compact spaces up to homeo $=$ separable unital commutative C^{*}-algebras up to isomorphism

Theorem (Sabok)
Isomorphism ER of separable C^{*}-algebras is Borel bireducible to $E_{G_{\infty}}$.

Non-commutative topology: C*-algebras excursion

Gelfand duality: Compact spaces up to homeo = separable unital commutative C^{*}-algebras up to isomorphism

Theorem (Sabok)

Isomorphism ER of separable C^{*}-algebras is Borel bireducible to $E_{G_{\infty}}$.

Definition

A C^{*}-algebra $P \in \mathcal{M}$ is projective in class \mathcal{M} if for every $B \in \mathcal{M}$, every quotient morphism $\pi: B \rightarrow B / J$ and $f: P \rightarrow B / J$ there is a morphism $\bar{f}: P \rightarrow B$ such that $f=\pi \bar{f}$.

- X is $\mathrm{AR} \Longleftrightarrow C(X, \mathbb{C})$ is projective in the class of commutative unital C^{*}-algebras (follows simply by the Gelfand duality)
- X is a dendrite $\Longleftrightarrow C(X, \mathbb{C})$ is projective in the class of unital C*-algebras (Chigogidze, Dranishnikov 2010)

Questions

What is the exact complexity of conjugacy ER of

- triangular maps?
- transitive interval DS?
- minimal Cantor DS? ...

THANK YOU FOR YOUR ATTENTION.

