Complexity of some orbit equivalence relations induced by homeomorphism groups

Benjamin Vejnar

Faculty of Mathematics and Physics Charles University

Prague, June 14-18, 2021

The aim of the talk:

- 1) to present a formal framework for classification results Descriptive Set Theory
 - Polish spaces / standard Borel spaces
 - continuous / Borel mappings

Invariant Descriptive Set Theory:

- equivalence relations on standard Borel spaces
- Borel reductions

The aim of the talk:

- 1) to present a formal framework for classification results Descriptive Set Theory
 - Polish spaces / standard Borel spaces
 - continuous / Borel mappings

Invariant Descriptive Set Theory:

- equivalence relations on standard Borel spaces
- Borel reductions

2) apply to objects in Topological Dynamics and Continuum Theory.

Theorem

Interval dynamical systems (up to conjugacy) can be classified by countable structures (up to isomorphism).

Example of a classification result

Theorem

2-dimensional compact orientable manifolds without boundary are up to homeomorphism classified by non-negative integers.

Example of a classification result

Theorem

2-dimensional compact orientable manifolds without boundary are up to homeomorphism classified by non-negative integers.

There exists a natural mapping

 $f: X = \{2 \text{-dimensional compact orientable manifolds}\} \rightarrow Y = \{0, 1, \dots\}$

such that

- homeomorphic manifolds are mapped to equal numbers,
- non-homeomorphic manifolds are mapped to distinct numbers.

Complexity: reductions

Definition

- Let X, Y be sets,
- let E, F be equivalence relations (ER) on X and Y respectively.
 A mapping f: X → Y is called a reduction from E to F if for every two points x, x' ∈ X we have xEx' ⇐⇒ f(x)Ff(x').

Complexity: reductions

Definition

- Let X, Y be sets,
- let E, F be equivalence relations (ER) on X and Y respectively.
 A mapping f: X → Y is called a reduction from E to F if for every two points x, x' ∈ X we have xEx' ⇔ f(x)Ff(x').

We can find a reduction from *E* to *F* iff #E-equivalence classes $\leq \#F$ -equivalence classes.

4 / 22

Complexity: reductions

Definition

- Let X, Y be sets,
- let *E*, *F* be equivalence relations (ER) on *X* and *Y* respectively. A mapping $f: X \to Y$ is called a reduction from *E* to *E* if for over

A mapping $f: X \to Y$ is called a reduction from E to F if for every two points $x, x' \in X$ we have $xEx' \iff f(x)Ff(x')$.

We can find a reduction from *E* to *F* iff #E-equivalence classes $\leq \#F$ -equivalence classes.

Definition (natural reducibility)

- Let X, Y be Polish (standard Borel spaces),
- let E, F be ERs on X, Y respectively.

We say that *E* is Borel reducible to *F*, $(E \leq_B F)$, if there is a Borel measurable reduction from *E* to *F*.

We say that *E* is Borel bireducible with *F*, $(E \sim_B F)$, if $E \leq_B F$ and $F \leq_B E$.

Theorem (essentially: Banach, Stone)

Homeomorphism ER on compact metrizable spaces is Borel reducible into isometry ER of separable Banach spaces.

Example of a reduction

Theorem (essentially: Banach, Stone)

Homeomorphism ER on compact metrizable spaces is Borel reducible into isometry ER of separable Banach spaces.

- X = collection of all metrizable compacta
- Y = collection of all separable Banach spaces
- E = homeo ER on X
- F = isometry ER on Y

 $\begin{aligned} f \colon \ X \to Y, \\ K \mapsto \mathcal{C}(K, \mathbb{R}) \end{aligned}$

• K homeo L iff $C(K, \mathbb{R})$ isometric to $C(L, \mathbb{R})$.

Example of a reduction

Theorem (essentially: Banach, Stone)

Homeomorphism ER on compact metrizable spaces is Borel reducible into isometry ER of separable Banach spaces.

- X = collection of all metrizable compacta
- Y = collection of all separable Banach spaces
- E = homeo ER on X
- F = isometry ER on Y

 $\begin{aligned} f \colon \ X \to Y, \\ K \mapsto \mathcal{C}(K, \mathbb{R}) \end{aligned}$

• K homeo L iff $C(K, \mathbb{R})$ isometric to $C(L, \mathbb{R})$.

• f Borel?!

Coding

- a class of structures usually forms a proper class
- coding = a set of representatives with a Polish topology (standard Borel structure) on this set
- necessary so that we can verify borelness of a reduction
- countable groups can be coded by functions $\mathbb{N}\times\mathbb{N}\to\mathbb{N}$ hence elements of $\mathbb{N}^{\mathbb{N}\times\mathbb{N}}$
- \bullet the hyperspace of the Hilbert cube $[0,1]^{\mathbb{N}}$

is a coding for all compact spaces

Coding

- a class of structures usually forms a proper class
- coding = a set of representatives with a Polish topology (standard Borel structure) on this set
- necessary so that we can verify borelness of a reduction
- countable groups can be coded by functions $\mathbb{N}\times\mathbb{N}\to\mathbb{N}$ hence elements of $\mathbb{N}^{\mathbb{N}\times\mathbb{N}}$
- the hyperspace of the Hilbert cube [0, 1]^ℕ
 is a coding for all compact spaces
- usually, there are more natural coding for essentially the same thing

6/22

• all known natural coding of the same thing turned out to be equivalent (with respect to \sim_B)

Orbit ERs

Suppose that a Polish group G acts continuously on a Polish space X. Then

$$E_G^X = \{(x, g \cdot x) \colon g \in G, x \in X\}$$

is called an orbit ER.

Suppose that a Polish group G acts continuously on a Polish space X. Then

$$E_G^X = \{(x, g \cdot x) \colon g \in G, x \in X\}$$

is called an orbit ER.

Theorem (Becker, Kechris)

For every Polish group G there is a G-action on a Polish space X such that $E_G^Y \leq_B E_G^X$ for every G-action on a Polish space Y.

Suppose that a Polish group G acts continuously on a Polish space X. Then

$$E_G^X = \{(x, g \cdot x) \colon g \in G, x \in X\}$$

is called an orbit ER.

Theorem (Becker, Kechris)

For every Polish group G there is a G-action on a Polish space X such that $E_G^Y \leq_B E_G^X$ for every G-action on a Polish space Y.

- denote by E_G any such E_G^X (unique up to \sim_B)
- (Uspenskii) there is a universal Polish group G_{∞} .
- Every orbit ER can be Borel reduced to $E_{G_{\infty}}$ (this follows by Hjorth-Mackey: extensions of group actions)
- We consider these groups $G_{\infty}, S_{\infty}, F_2(F_{\infty})$

- universal orbit ER: $E_{G_{\infty}}$
 - the most complex among all orbit ERs
 - isometry ER of complete separable metric spaces (Gao, Kechris)
 - isometry ER of separable Banach spaces (Melleray)

- universal orbit ER: $E_{G_{\infty}}$
 - the most complex among all orbit ERs
 - isometry ER of complete separable metric spaces (Gao, Kechris)
 - isometry ER of separable Banach spaces (Melleray)
- S_{∞} -universal orbit ER: $E_{S_{\infty}}$
 - ullet the most complex among all orbit ERs generated by the group ${\it S}_\infty$
 - isomorphism ER of countable graphs, linear orders
 - isomorphism ER of most countable structures (Friedman, Stanley)

- universal orbit ER: $E_{G_{\infty}}$
 - the most complex among all orbit ERs
 - isometry ER of complete separable metric spaces (Gao, Kechris)
 - isometry ER of separable Banach spaces (Melleray)
- S_{∞} -universal orbit ER: $E_{S_{\infty}}$
 - ullet the most complex among all orbit ERs generated by the group ${\it S}_\infty$
 - isomorphism ER of countable graphs, linear orders
 - isomorphism ER of most countable structures (Friedman, Stanley)
- equality of countable sets: $E_{=+}$
 - the most complex S_∞ -orbit ER which is Π^0_3
 - $(x_n), (y_n) \in \mathbb{R}^{\mathbb{N}}$ are equivalent iff $\{x_n : n \in \mathbb{N}\} = \{y_n : n \in \mathbb{N}\}$
 - isomorphism ER of countable locally finite acyclic graphs

- universal orbit ER: $E_{G_{\infty}}$
 - the most complex among all orbit ERs
 - isometry ER of complete separable metric spaces (Gao, Kechris)
 - isometry ER of separable Banach spaces (Melleray)
- S_{∞} -universal orbit ER: $E_{S_{\infty}}$
 - ullet the most complex among all orbit ERs generated by the group ${\it S}_\infty$
 - isomorphism ER of countable graphs, linear orders
 - isomorphism ER of most countable structures (Friedman, Stanley)
- equality of countable sets: $E_{=+}$
 - the most complex S_{∞} -orbit ER which is Π_3^0
 - $(x_n), (y_n) \in \mathbb{R}^{\mathbb{N}}$ are equivalent iff $\{x_n \colon n \in \mathbb{N}\} = \{y_n \colon n \in \mathbb{N}\}$
 - isomorphism ER of countable locally finite acyclic graphs
- universal countable $ER = F_2$ -universal orbit ER: E_{F_2}
 - the most complex Borel ER with countable orbits (Feldman-Moore)
 - isometry ER of Heine-Borel complete metric spaces

$E_{F_2} \lneq_B E_{=^+} \lneq_B E_{S_\infty} \lneq_B E_{G_\infty}$

・ 回 ト ・ ヨ ト ・ ヨ ト

Homeomorphism ER and conjugacy ER

- X ... compact metrizable space
- C(X) ... continuous selfmaps of X into itself
- $\mathcal{K}(X)$... hyperspace of compact subsets of X
- $\mathcal{H}(X)$... homeomorphisms of X onto itself

Homeomorphism ER and conjugacy ER

- X . . . compact metrizable space
- C(X) ... continuous selfmaps of X into itself
- $\mathcal{K}(X)$... hyperspace of compact subsets of X
- $\mathcal{H}(X)$... homeomorphisms of X onto itself

a) Conjugacy action

$$\mathcal{H}(X) \frown \mathcal{C}(X), \quad h \cdot f = h^{-1} \circ f \circ h$$

b) 'Shift' (ambient homeomorphism) action

$$\mathcal{H}(X) \curvearrowright \mathcal{K}(X), \quad h \cdot K = h(K)$$

Theorem (Hjorth, 2000)

- Conjugacy ER of invertible interval $DS \sim_B E_{S_{\infty}}$.
- Conjugacy ER of invertible DS on $[0,1]^2$ is NOT $\leq_B E_{S_{\infty}}$.

Theorem

2001 Camerlo-Gao: Conjugacy ER of (invertible) Cantor set DS $\sim_B E_{S_{\infty}}$ 2009 Clemens: Conjugacy of subshifts $\sim_B E_{F_2}$ 2017 Kaya: Conjugacy ER of pointed invertible minimal Cantor DS $\sim_B E_{=+}$ 2017 Kaya: $E_{=+} \leq_B$ conjugacy of invertible minimal Cantor DS 2019 Kwietniak: Conjugacy ER of shifts with specification is $\sim_B E_{F_2}$

11 / 22

Classification results up to conjugacy

Theorem (Bruin, V., 2019)

Conjugacy ER of interval $DS \sim_B E_{S_{\infty}}$.

Proof.

- \geq_B : Hjorth (even for homeos)
- \leq_B : tent map example

Conjugacy ER on $C([0,1]) \leq_B E_{S_{\infty}}$ - proof

- Left strict local maximum of f.
- M_f ... all left/right strict local max/min of f.
- C_f ... the smallest set such that

a)
$$\{0,1\} \cup M_f \subseteq C_f$$
,

b) if $f^{-1}(y)$ contains an interval then $y \in C_f$,

c) if
$$n \in \mathbb{N}$$
 then $\operatorname{Acc}(\operatorname{Fix}(f^n)) \subseteq C_f$,

d)
$$f(C_f) \subseteq C_f$$
,

e) if
$$y \in C_f$$
 then $Acc(f^{-1}(y)) \subseteq C_f$.

13/22

Conjugacy ER on $C([0,1]) \leq_B E_{S_{\infty}}$ - proof

- Left strict local maximum of f.
- M_f ... all left/right strict local max/min of f.
- C_f ... the smallest set such that

a)
$$\{0,1\} \cup M_f \subseteq C_f$$
,

- b) if $f^{-1}(y)$ contains an interval then $y \in C_f$,
- c) if $n \in \mathbb{N}$ then $Acc(Fix(f^n)) \subseteq C_f$,

d)
$$f(C_f) \subseteq C_f$$
,

e) if
$$y \in C_f$$
 then $Acc(f^{-1}(y)) \subseteq C_f$.

- C_f is countable, it is determined only by the dynamics of f.
- The closure of C_f captures interesting dynamics of f.
- D_f ... a countable invariant dense subset of $[0,1] \setminus Cl(C_f)$.
- $\varphi \colon f \mapsto (C_f \cup D_f, < \upharpoonright_{C_f \cup D_f}, f \upharpoonright_{C_f \cup D_f}))$ is a reduction.
- Isomorphism ER of countable structures $\leq_B E_{S_{\infty}}$.

Every ER which is induced by a continuous action of the group $\mathcal{H}([0,1])$ is Borel reducible to $E_{S_{\infty}}$, i.e.

 $E_{\mathcal{H}([0,1])} \sim_B E_{S_{\infty}}.$

Theorem (Bruin, V., 2019)

Conjugacy ER of Hilbert cube $DS \sim_B E_{G_{\infty}}$.

Proof.

- \leq_B : by Rosendal, Zielinski 2018
- \geq_B : Lemma: Let K be compact. Then there is a compactification of \mathbb{N} with remainder K. Every homeo of K can be extended to a homeo of the whole compactification.

15 / 22

Homeomorphism ER

'Shift' action $\mathcal{H}(X) \curvearrowright \mathcal{K}(X), \quad h \cdot K = h(K)$

The corresponding orbit equivalence relation is ambient homeomorphism.

Theorem (Kechris, Solecki)

Homeo ER on compacta \leq_B orbit ER.

Proof.

- $Q := [0,1]^{\mathbb{N}}$
- $Z := \{x \in Q : x_1 = 0\}.$
- Z is so called Z-set in Q, thus for every compact $K, L \subseteq Z$, every homeo $h: K \to L$, can be extended to a homeo of Q
- $id: \mathcal{K}(Z) \to \mathcal{K}(Q)$ is the desired reduction.

16 / 22

Definition

- continuum = compact and connected space
- locally connected (LC) = each point has small connected neighborhoods
- \bullet absolute retract (AR) = retract of the Hilbert cube $[0,1]^{\mathbb{N}}$

 $\mathsf{AR} \implies \mathsf{LC} \ \mathsf{continuum} \implies \mathsf{continuum} \implies \mathsf{compactum}$

Definition

- continuum = compact and connected space
- locally connected (LC) = each point has small connected neighborhoods
- \bullet absolute retract (AR) = retract of the Hilbert cube $[0,1]^{\mathbb{N}}$
- $AR \implies LC \text{ continuum} \implies \text{continuum} \implies \text{compactum}$

Theorem

2016 Zielinski: Homeo ER on compacta $\sim_B E_{G_{\infty}}$ 2017 Chang, Gao: Homeo ER on continua $\sim_B E_{G_{\infty}}$ 2018 Cieśla: Homeo ER on LC continua $\sim_B E_{G_{\infty}}$ 2018 Krupski, V.: Homeo ER on AR $\sim_B E_{G_{\infty}}$

A D F A B F A B F A B

Some methods

Theorem (Krupski, V.)

Homeo ER on compacta \leq_B homeo ER on AR.

Proof.

- Lemma: Let K be compact. Then there is a compactification of N with remainder K. Every homeo of K can be extended to a homeo of the whole compactification.
- $f: \mathcal{K}(Q) \to \mathcal{K}(Q \times [0,1] \times [0,1])$

Low-dimensional topological classes

Definition

- 0-dimensional compacta
 - = closed subspaces of the Cantor set
- dendrites
 - = 1-dimensional AR
- rim-finite (RF) continua
 - = have a base with finite boundaries
- rim-finite compacta
- $\mathsf{AR}(\mathbb{R}^2)$ = embeddable in the plane

Dendrite \iff RF and AR(\mathbb{R}^2) 0-dimensional \implies RF

We are omitting: 'Homeomorphism ER on'

Theorem

2001 Camerlo, Gao: 0-dimensional compacta $\sim_B E_{S_{\infty}}$ (Stone duality) 2005 Camerlo, Darji, Marcone: dendrites $\sim_B E_{S_{\infty}}$ (ternary relations) 2018 Krupski, V.: rim-finite continua $\sim_B E_{S_{\infty}}$ (n-ary relations) 2019 Dudák, V.: AR(\mathbb{R}^2) $\sim_B E_{S_{\infty}}$ (reduction to the boundary)

20 / 22

We are omitting: 'Homeomorphism ER on'

Theorem

2001 Camerlo, Gao: 0-dimensional compacta $\sim_B E_{S_{\infty}}$ (Stone duality) 2005 Camerlo, Darji, Marcone: dendrites $\sim_B E_{S_{\infty}}$ (ternary relations) 2018 Krupski, V.: rim-finite continua $\sim_B E_{S_{\infty}}$ (n-ary relations) 2019 Dudák, V.: AR(\mathbb{R}^2) $\sim_B E_{S_{\infty}}$ (reduction to the boundary)

2019 Dudák, V.: $AR(\mathbb{R}^3)$, $LC(\mathbb{R}^2) \not\sim_B E_{S_{\infty}}$ 2018 Krupski, V.: rim-finite compacta $\not\sim_B E_{S_{\infty}}$ (Hjorth: turbulence)

rim-finite cases:

20 / 22

Non-commutative topology: C^* -algebras excursion

Gelfand duality: Compact spaces up to homeo = separable unital commutative C^* -algebras up to isomorphism

Theorem (Sabok)

Isomorphism ER of separable C^* -algebras is Borel bireducible to $E_{G_{\infty}}$.

Non-commutative topology: C^* -algebras excursion

Gelfand duality: Compact spaces up to homeo = separable unital commutative C^* -algebras up to isomorphism

Theorem (Sabok)

Isomorphism ER of separable C^* -algebras is Borel bireducible to $E_{G_{\infty}}$.

Definition

A C*-algebra $P \in \mathcal{M}$ is projective in class \mathcal{M} if for every $B \in \mathcal{M}$, every quotient morphism $\pi: B \to B/J$ and $f: P \to B/J$ there is a morphism $\overline{f}: P \to B$ such that $f = \pi \overline{f}$.

- X is AR ↔ C(X, C) is projective in the class of commutative unital C*-algebras (follows simply by the Gelfand duality)
- X is a dendrite ⇔ C(X, C) is projective in the class of unital C*-algebras (Chigogidze, Dranishnikov 2010)

What is the exact complexity of conjugacy ER of

- triangular maps?
- transitive interval DS?
- minimal Cantor DS? ...

THANK YOU FOR YOUR ATTENTION.