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Outline of the talk

© Pressure, equilibrium states and zero-temperature measures
@ Existence of zero-temperature measures

© Computability of zero-temperature measures and residual
entropy
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Setup: Let (X, d) be a compact metric space and let f : X — X be
continuous. We endow

M ={p: f —invariant Borel probability measure on X}

with the weaksx topology.
—> M a compact, convex, metrizable.

Let Mg C M be the subset of ergodic measures, that is, if f~1(A) = A
then u(A) € {0,1}.

We denote by h,,(f) the measure-theoretic entropy of .
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Let C(X,R) denote the space of continuous functions ¢ : X — R endowed
with the supremums norm.

Definition
The topological pressure Piop : C(X,R) — R is defined by
Pn() = sup h(F) + [ ol

HEM

A measure p is an equilibrium state of ¢ if Peop(¢) = hu(f) + [ ¢ du. The
topological pressure of the constant zero potential is called the topological
entropy hiop(f) of f.

We assume that the entropy map p +— h,(f) is upper semi-continuous which
guarantees that for each potential ¢ there exists at least one (ergodic)
equilibrium state.
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Let ¢ € C(X,R) such that for all 8 > 0 the potential 3¢ has a unique
equilibrium state yi5 = pp5. We think of B = + as the inverse temperature (T

being the temperature) of the system.

Definition

If the limit foo,¢ = limg_ oo g (in the weak* topology) exists we call poo ¢ the
zero-temperature measure of ¢. If pio,4 does not exist we consider the set of
of accumulation points of g as 8 — oo which we call the ground state set

GS(¢) of .

Theorem (Folklore)
Suppose p € GS(¢). Then

def

(i) [odu=sup{[odv:ve M} = by.
(i) hu(F) = suplho(F) : [ $dv = by} ™ by,

The quantity ha,e is called the residual entropy of ¢, i.e., the maximal entropy
at zero temperature.



Geometry and Computability of zero-temperature measures

Let d >2, A={0,...,d — 1} be a finite alphabet and let A be a transition
matrix. We define X = Xa = {(xi)ien, : Xi € A, Ay =1} Let F: X = X
be the shift map. We say f is a subshift of finite type. In the following we
assume that f is transitive.

Denote by LC(X,R) = J, LCk(X,R) the locally constant potentials, where
LCk(X,R) are the potentials constant on cylinders of length k.

Theorem (Brémont, Nonlinearity, 2003)

If € LC(X,R) then the zero-temperature measure fioo,s €Xists.

Theorem (W., Yang, TAMS, 2019)

Let k € N. Then there exist a partition of LC,(X,R) into finitely many convex

cones Uy, ..., Up ,Up, 41, ..., Un and k-elementary points xi,...,Xp such that:
(i) Uh,...,Ue, are open, and U U ...UU; = LCk(X,R). Further, the orbit
of x; is the unique maximizing periodic orbit of ¢. Foreachi=1,...,/¢,

for all ¢ € U;, we have oo, = [ix;, I.€., the unique invariant measure
supported on the periodic orbit x;.

(ii) If ¢ € Up41 U ... UUN then peo,4 is either non-ergodic or has positive
entropy or both.
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Basics from Computable Analysis:

Definition

Let m € N and x € R™. An oracle of x is a function ¢ : N — Q" such that
lo(n) — x|| < 27". Moreover, x is computable if there is a Turing Machine (a
computer program for our purposes) ¥ which is an oracle of x.

Basic Facts:

(i) Rational numbers, algebraic numbers, and some transcendental numbers
such as e and 7w are computable real numbers.

(ii) There are only countably many computable points in R™.

Definition

Let S C R™. A function g : S — R is computable if there is a Turing machine
X so that for any x € S and any oracle ¢ for x, x(¢, n) is a rational number so
that |x (¢, n) —g(x)[ <27".
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Definition

Let S C R™. A function g : S — R is upper semi-computable if there is a
Turing machine x so that for any n € N and x € S, and any oracle 1 for x,
x(¥, n) = gn € Q such that g, | g(x) as n — co. Analogously one defines
lower semi-computable functions.

A function g : S — R is computable if and only if g is lower and upper
semi-computable.

Similar notions of computability exist for many mathematical objects (subsets
of Euclidian space, shift spaces, measure spaces, etc.) and functions.
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A Computability result for zero-temperature measures:

Theorem (Burr, W., Nonlinearity 2021)

Let k € N. Let Oy be the set of potentials ¢ € LC(X,R) such that the
zero-temperature measure [i~,5 is supported on a periodic orbit. Then

(i) Then Ox> ¢ — pioo,s is computable.

(i) The set Ok is a lower computable open and dense subset of LC(X,R).
(i) If ¢o € LCk(X,R) \ Ok, then 10,4, is not computable.
(iv) If the cylinder length k is not given in advance, then piso 4, is not

computable for any ¢o € LC(X,R).
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A Computability result for the residual entropy:

Theorem (Burr, W., Nonlinearity 2021)

Let f : X — X be a transitive subshift of finite type. Then the function
¢ — heo,s is upper semi-computable, but not computable on C(X,R).
Moreover, the map ¢ — ho, ¢ is continuous at ¢o if and only if heo ¢, = 0.
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