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Setup: Let (X , d) be a compact metric space and let f : X → X be
continuous. We endow

M = {µ : f − invariant Borel probability measure on X}

with the weak∗ topology.

=⇒ M a compact, convex, metrizable.

LetME ⊂M be the subset of ergodic measures, that is, if f −1(A) = A
then µ(A) ∈ {0, 1}.

We denote by hµ(f ) the measure-theoretic entropy of µ.
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Let C(X ,R) denote the space of continuous functions φ : X → R endowed
with the supremums norm.

Definition

The topological pressure Ptop : C(X ,R)→ R is defined by

Ptop(φ) = sup
µ∈M

hµ(f ) +

∫
φ dµ

A measure µ is an equilibrium state of φ if Ptop(φ) = hµ(f ) +
∫
φ dµ. The

topological pressure of the constant zero potential is called the topological
entropy htop(f ) of f .

We assume that the entropy map µ 7→ hµ(f ) is upper semi-continuous which
guarantees that for each potential φ there exists at least one (ergodic)
equilibrium state.
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Let φ ∈ C(X ,R) such that for all β ≥ 0 the potential βφ has a unique
equilibrium state µβ = µβφ. We think of β = 1

T
as the inverse temperature (T

being the temperature) of the system.

Definition

If the limit µ∞,φ = limβ→∞ µβ (in the weak∗ topology) exists we call µ∞,φ the
zero-temperature measure of φ. If µ∞,φ does not exist we consider the set of
of accumulation points of µβ as β →∞ which we call the ground state set
GS(φ) of φ.

Theorem (Folklore)

Suppose µ ∈ GS(φ). Then

(i)
∫
φ dµ = sup{

∫
φ dν : ν ∈M} def

= bφ.

(ii) hµ(f ) = sup{hν(f ) :
∫
φ dν = bφ}

def
= h∞,φ.

The quantity h∞,φ is called the residual entropy of φ, i.e., the maximal entropy
at zero temperature.
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Let d ≥ 2, A = {0, . . . , d − 1} be a finite alphabet and let A be a transition
matrix. We define X = XA = {(xi )i∈N0 : xi ∈ A,Axi ,xi+1 = 1}. Let f : X → X
be the shift map. We say f is a subshift of finite type. In the following we
assume that f is transitive.

Denote by LC(X ,R) =
⋃

k LCk(X ,R) the locally constant potentials, where
LCk(X ,R) are the potentials constant on cylinders of length k.

Theorem (Brémont, Nonlinearity, 2003)

If φ ∈ LC(X ,R) then the zero-temperature measure µ∞,φ exists.

Theorem (W., Yang, TAMS, 2019)

Let k ∈ N. Then there exist a partition of LCk(X ,R) into finitely many convex
cones U1, . . . ,U`1 ,U`1+1, . . . ,UN and k-elementary points x1, . . . , x` such that:

(i) U1, . . . ,U`1 are open, and U1 ∪ . . . ∪ U` = LCk(X ,R). Further, the orbit
of xi is the unique maximizing periodic orbit of φ. For each i = 1, . . . , `,
for all φ ∈ Ui , we have µ∞,φ = µxi , i.e., the unique invariant measure
supported on the periodic orbit xi .

(ii) If φ ∈ U`+1 ∪ . . . ∪ UN then µ∞,φ is either non-ergodic or has positive
entropy or both.
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Basics from Computable Analysis:

Definition

Let m ∈ N and x ∈ Rm. An oracle of x is a function ψ : N→ Qm such that
‖ψ(n)− x‖ < 2−n. Moreover, x is computable if there is a Turing Machine (a
computer program for our purposes) ψ which is an oracle of x .

Basic Facts:

(i) Rational numbers, algebraic numbers, and some transcendental numbers
such as e and π are computable real numbers.

(ii) There are only countably many computable points in Rm.

Definition

Let S ⊂ Rm. A function g : S → R is computable if there is a Turing machine
χ so that for any x ∈ S and any oracle ψ for x , χ(ψ, n) is a rational number so
that |χ(ψ, n)− g(x)| < 2−n.
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Definition

Let S ⊂ Rm. A function g : S → R is upper semi-computable if there is a
Turing machine χ so that for any n ∈ N and x ∈ S , and any oracle ψ for x ,
χ(ψ, n) = qn ∈ Q such that qn ↓ g(x) as n→∞. Analogously one defines
lower semi-computable functions.

Lemma

A function g : S → R is computable if and only if g is lower and upper
semi-computable.

Similar notions of computability exist for many mathematical objects (subsets
of Euclidian space, shift spaces, measure spaces, etc.) and functions.
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A Computability result for zero-temperature measures:

Theorem (Burr, W., Nonlinearity 2021)

Let k ∈ N. Let Ok be the set of potentials φ ∈ LCk(X ,R) such that the
zero-temperature measure µ∞,φ is supported on a periodic orbit. Then

(i) Then Ok

∈

φ 7→ µ∞,φ is computable.

(ii) The set Ok is a lower computable open and dense subset of LCk(X ,R).

(iii) If φ0 ∈ LCk(X ,R) \ Ok , then µ∞,φ0 is not computable.

(iv) If the cylinder length k is not given in advance, then µ∞,φ0 is not
computable for any φ0 ∈ LC(X ,R).
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A Computability result for the residual entropy:

Theorem (Burr, W., Nonlinearity 2021)

Let f : X → X be a transitive subshift of finite type. Then the function
φ 7→ h∞,φ is upper semi-computable, but not computable on C(X ,R).
Moreover, the map φ 7→ h∞,φ is continuous at φ0 if and only if h∞,φ0 = 0.
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