Geometry and Computability of zero-temperature measures

Christian Wolf The City College of New York

9th Visegrad Conference Dynamical Systems, Prague 2021

June 18, 2021

Outline of the talk

- Pressure, equilibrium states and zero-temperature measures
- 2 Existence of zero-temperature measures
- Computability of zero-temperature measures and residual entropy

Setup: Let (X, d) be a compact metric space and let $f : X \to X$ be continuous. We endow

 $\mathcal{M} = \{\mu : f - \text{invariant Borel probability measure on } X\}$

with the weak* topology.

 $\implies \mathcal{M}$ a compact, convex, metrizable.

Let $\mathcal{M}_E \subset \mathcal{M}$ be the subset of ergodic measures, that is, if $f^{-1}(A) = A$ then $\mu(A) \in \{0, 1\}$.

We denote by $h_{\mu}(f)$ the measure-theoretic entropy of μ .

Let $C(X, \mathbb{R})$ denote the space of continuous functions $\phi : X \to \mathbb{R}$ endowed with the supremums norm.

Definition

The topological pressure P_{top} : $C(X, \mathbb{R}) \to \mathbb{R}$ is defined by

$$P_{ ext{top}}(\phi) = \sup_{\mu \in \mathcal{M}} h_{\mu}(f) + \int \phi \, d\mu$$

A measure μ is an *equilibrium state* of ϕ if $P_{top}(\phi) = h_{\mu}(f) + \int \phi \, d\mu$. The topological pressure of the constant zero potential is called the topological entropy $h_{top}(f)$ of f.

We assume that the entropy map $\mu \mapsto h_{\mu}(f)$ is upper semi-continuous which guarantees that for each potential ϕ there exists at least one (ergodic) equilibrium state.

Let $\phi \in C(X, \mathbb{R})$ such that for all $\beta \geq 0$ the potential $\beta \phi$ has a unique equilibrium state $\mu_{\beta} = \mu_{\beta\phi}$. We think of $\beta = \frac{1}{T}$ as the inverse temperature (*T* being the temperature) of the system.

Definition

If the limit $\mu_{\infty,\phi} = \lim_{\beta \to \infty} \mu_{\beta}$ (in the weak* topology) exists we call $\mu_{\infty,\phi}$ the zero-temperature measure of ϕ . If $\mu_{\infty,\phi}$ does not exist we consider the set of of accumulation points of μ_{β} as $\beta \to \infty$ which we call the ground state set $GS(\phi)$ of ϕ .

Theorem (Folklore)

Suppose $\mu \in GS(\phi)$. Then

(i)
$$\int \phi \, d\mu = \sup \{ \int \phi \, d\nu : \nu \in \mathcal{M} \} \stackrel{\text{def}}{=} b_{\phi}.$$

(ii)
$$h_{\mu}(f) = \sup\{h_{\nu}(f) : \int \phi \, d\nu = b_{\phi}\} \stackrel{\text{def}}{=} h_{\infty,\phi}.$$

The quantity $h_{\infty,\phi}$ is called the residual entropy of ϕ , i.e., the maximal entropy at zero temperature.

Let $d \ge 2$, $\mathcal{A} = \{0, \ldots, d-1\}$ be a finite alphabet and let A be a transition matrix. We define $X = X_A = \{(x_i)_{i \in \mathbb{N}_0} : x_i \in \mathcal{A}, A_{x_i, x_{i+1}} = 1\}$. Let $f : X \to X$ be the shift map. We say f is a subshift of finite type. In the following we assume that f is transitive.

Denote by $LC(X, \mathbb{R}) = \bigcup_k LC_k(X, \mathbb{R})$ the locally constant potentials, where $LC_k(X, \mathbb{R})$ are the potentials constant on cylinders of length k.

Theorem (Brémont, Nonlinearity, 2003)

If $\phi \in LC(X, \mathbb{R})$ then the zero-temperature measure $\mu_{\infty,\phi}$ exists.

Theorem (W., Yang, TAMS, 2019)

Let $k \in \mathbb{N}$. Then there exist a partition of $LC_k(X, \mathbb{R})$ into finitely many convex cones $U_1, \ldots, U_{\ell_1}, U_{\ell_1+1}, \ldots, U_N$ and k-elementary points x_1, \ldots, x_ℓ such that:

- (i) U₁,...,U_{ℓ1} are open, and U₁ ∪ ... ∪ U_ℓ = LC_k(X, ℝ). Further, the orbit of x_i is the unique maximizing periodic orbit of φ. For each i = 1,..., ℓ, for all φ ∈ U_i, we have μ_{∞,φ} = μ_{xi}, i.e., the unique invariant measure supported on the periodic orbit x_i.
- (ii) If $\phi \in U_{\ell+1} \cup \ldots \cup U_N$ then $\mu_{\infty,\phi}$ is either non-ergodic or has positive entropy or both.

Basics from Computable Analysis:

Definition

Let $m \in \mathbb{N}$ and $x \in \mathbb{R}^m$. An *oracle* of x is a function $\psi : \mathbb{N} \to \mathbb{Q}^m$ such that $\|\psi(n) - x\| < 2^{-n}$. Moreover, x is computable if there is a Turing Machine (a computer program for our purposes) ψ which is an oracle of x.

Basic Facts:

- (i) Rational numbers, algebraic numbers, and some transcendental numbers such as e and π are computable real numbers.
- (ii) There are only countably many computable points in \mathbb{R}^m .

Definition

Let $S \subset \mathbb{R}^m$. A function $g : S \to \mathbb{R}$ is *computable* if there is a Turing machine χ so that for any $x \in S$ and any oracle ψ for x, $\chi(\psi, n)$ is a rational number so that $|\chi(\psi, n) - g(x)| < 2^{-n}$.

Definition

Let $S \subset \mathbb{R}^m$. A function $g: S \to \mathbb{R}$ is *upper semi-computable* if there is a Turing machine χ so that for any $n \in \mathbb{N}$ and $x \in S$, and any oracle ψ for x, $\chi(\psi, n) = q_n \in \mathbb{Q}$ such that $q_n \downarrow g(x)$ as $n \to \infty$. Analogously one defines lower semi-computable functions.

Lemma

A function $g: S \to \mathbb{R}$ is computable if and only if g is lower and upper semi-computable.

Similar notions of computability exist for many mathematical objects (subsets of Euclidian space, shift spaces, measure spaces, etc.) and functions.

A Computability result for zero-temperature measures:

Theorem (Burr, W., Nonlinearity 2021)

Let $k \in \mathbb{N}$. Let \mathcal{O}_k be the set of potentials $\phi \in LC_k(X, \mathbb{R})$ such that the zero-temperature measure $\mu_{\infty,\phi}$ is supported on a periodic orbit. Then

- (i) Then $\mathcal{O}_k \ni \phi \mapsto \mu_{\infty,\phi}$ is computable.
- (ii) The set \mathcal{O}_k is a lower computable open and dense subset of $LC_k(X, \mathbb{R})$.
- (iii) If $\phi_0 \in LC_k(X, \mathbb{R}) \setminus \mathcal{O}_k$, then μ_{∞,ϕ_0} is not computable.
- (iv) If the cylinder length k is not given in advance, then μ_{∞,ϕ_0} is not computable for any $\phi_0 \in LC(X, \mathbb{R})$.

A Computability result for the residual entropy:

Theorem (Burr, W., Nonlinearity 2021)

Let $f : X \to X$ be a transitive subshift of finite type. Then the function $\phi \mapsto h_{\infty,\phi}$ is upper semi-computable, but not computable on $C(X,\mathbb{R})$. Moreover, the map $\phi \mapsto h_{\infty,\phi}$ is continuous at ϕ_0 if and only if $h_{\infty,\phi_0} = 0$.